

Benchmarking Sparse
Matrix-Vector Multiply

In 5 Minutes
Hormozd Gahvari, Mark Hoemmen,
James Demmel, and Kathy Yelick

January 21, 2007

Outline

What is Sparse Matrix-Vector
Multiply (SpMV)? Why benchmark it?

How to benchmark it?
Past approaches
Our approach

Results
Conclusions and directions for future

work

SpMV

Sparse Matrix-(dense)Vector Multiply
Multiply a dense vector by a sparse matrix

(one whose entries are mostly zeroes)
Why do we need a benchmark?

SpMV is an important kernel in scientific
computation

Vendors need to know how well their
machines perform it

Consumers need to know which machines to
buy

Existing benchmarks do a poor job of
approximating SpMV

Existing Benchmarks

The most widely used method for ranking
computers is still the LINPACK benchmark,
used exclusively by the Top 500
supercomputer list

Benchmark suites like the High Performance
Computing Challenge (HPCC) Suite seek to
change this by including other benchmarks

Even the benchmarks in HPCC do not model
SpMV however

This work is proposed for inclusion into the
HPCC suite

Benchmarking SpMV is hard!

Issues to consider:
Matrix formats
Memory access patterns
Performance optimizations and why

we need to benchmark them

Preexisting benchmarks that
perform SpMV do not take all of
this into account

Matrix Formats

We store only the nonzero entries
in sparse matrices

This leads to multiple ways of
storing the data, based on how we
index it
Coordinate, CSR, CSC, ELLPACK,…

Use Compressed Sparse Row (CSR)
as our baseline format as it
provides best overall unoptimized
performance across many
architectures

CSR SpMV Example

(M,N) = (4,5)

NNZ = 8

row_start:

(0,2,4,6,8)

col_idx:

(0,1,0,2,1,3,2,4)

values:

(1,2,3,4,5,6,7,8)

Memory Access Patterns

 Unlike dense case, memory access patterns differ
for matrix and vector elements
 Matrix elements: unit stride
 Vector elements: indirect access for the source vector

(the one multiplied by the matrix)
 This leads us to propose three categories for

SpMV problems:
 Small: everything fits in cache
 Medium: source vector fits in cache, matrix does not
 Large: source vector does not fit in cache

 These categories will exercise the memory
hierarchy differently and so may perform
differently

Examples from Three
Platforms

Intel Pentium 4
2.4 GHz
512 KB cache

Intel Itanium 2
1 GHz
3 MB cache

AMD Opteron
1.4 GHz
1 MB cache

Data collected
using a test suite
of 275 matrices
taken from the
University of
Florida Sparse
Matrix Collection

Performance is
graphed vs.
problem size

horizontal axis = matrix dimension or
vector length

vertical axis = density in nnz/row

colored dots represent unoptimized
performance of real matrices

Performance Optimizations
 Many different optimizations possible
 One family of optimizations involves blocking the matrix to

improve reuse at a particular level of the memory hierarchy
 Register blocking - very often useful
 Cache blocking - not as useful

 Which optimizations to use?
 HPCC framework allows significant optimization by the user - we

don’t want to go as far
 Automatic tuning at runtime permits a reasonable comparison

of architectures, by trying the same optimizations on each one
 We will use only the register-blocking optimization (BCSR),

which is implemented in the OSKI automatic tuning system for
sparse matrix kernels developed at Berkeley

 Prior research has found register blocking to be applicable to a
number of real-world matrices, particularly ones from finite
element applications

Both unoptimized and
optimized SpMV matter

Why we need to measure optimized SpMV:
 Some platforms benefit more from performance tuning than

others
 In the case of the tested platforms, Itanium 2 and Opteron

gain vs. P4 when we tune using OSKI

Why we need to measure unoptimized SpMV:
 Some SpMV problems are more resistant to optimization
 To be effective, register blocking needs a matrix with a

dense block structure
 Not all sparse matrices have one

Graphs on next slide illustrate this

horizontal axis = matrix dimension or
vector length

vertical axis = density in nnz/row

blank dots represent real matrices
that OSKI could not tune due to lack
of a dense block structure

colored dots represent speedups
obtained by OSKI’s tuning

So what do we do?

 We have a large search space of matrices to
examine

 We could just do lots of SpMV on real-world
matrices. However
 It’s not portable. Several GB to store and transport. Our

test suite takes up 8.34 GB of space
 Appropriate set of matrices is always changing as

machines grow larger

 Instead, we can randomly generate sparse
matrices that mirror real-world matrices by
matching certain properties of these matrices

Matching Real Matrices
With Synthetic Ones

 Randomly generated matrices for each of 275
matrices taken from the Florida collection

 Matched real matrices in dimension, density
(measured in NNZ/row), blocksize, and
distribution of nonzero entries

 Nonzero distribution was measured for each
matrix by looking at what fraction of nonzero
entries are in bands a certain percentage away
from the main diagonal

Band Distribution
Illustration

What proportion of the
nonzero entries fall into
each of these bands 1-5?

We use 10 bands instead of
5, but have shown 5 for
simplicity.

In these graphs, real matrices are
denoted by a red R, and synthetic
matrices by a green S. Real
matrices are connected by a line
whose color indicates which matrix
was faster to the synthetic matrices
created to approximate them.

Remaining Issues
 We’ve found a reasonable way to model real

matrices, but benchmark suites want less
output. HPCC wants us to report only a few
numbers, preferably just one

 Challenges in getting there
 As we’ve seen, SpMV performance depends greatly on

the matrix, and there is a large range of problem sizes.
How do we capture this all? Stats on Florida matrices:
Dimension ranges from a few hundred to over a million
NNZ/row ranges from 1 to a few hundred

 How to capture performance of matrices with small
dense blocks that benefit from register blocking?

 What we’ll do:
 Bound the set of synthetic matrices we generate
 Determine which numbers to report that we feel

capture the data best

Bounding the Benchmark Set
 Limit to square matrices
 Look over only a certain range of problem dimensions

and NNZ/row
 Since dimension range is so huge, restrict dimension to

powers of 2
 Limit blocksizes tested to ones in {1,2,3,4,6,8} x

{1,2,3,4,6,8}
 These were the most common ones encountered in prior

research with matrices that mostly had dense block
structures

 Here are the limits based on the matrix test suite:
 Dimension <= 2^20 (a little over one million)
 24 <= NNZ/row <= 34 (avg. NNZ/row for real matrix test

suite is 29)
 Generate matrices with nonzero entries distributed

(band distribution) based on statistics for the test suite
as a whole

Condensing the Data

 This is a lot of data
 11 x 12 x 36 = 4752 matrices to run

 Tuned and untuned cases are separated, as they
highlight differences between platforms
 Untuned data will only come from unblocked matrices
 Tuned data will come from the remaining (blocked)

matrices

 In each case (blocked and unblocked), report the
maximum and median MFLOP rates to capture
small/medium/large behavior

 When forced to report one number, report the
blocked median

Output

Unblocked Blocked
Max Median Max Median

Pentium 4 699 307 1961 530
Itanium 2 443 343 2177 753
Opteron 396 170 1178 273

(all numbers MFLOP/s)

How well does the
benchmark approximate
real SpMV performance?

These graphs show the
benchmark numbers as
horizontal lines versus the
real matrices which are
denoted by circles.

Output

Matrices generated by the benchmark
fall into small/medium/large categories
as follows:

Pentium 4 Itanium 2 Opteron

Small 17% 33% 23%

Medium 42% 50% 44%

Large 42% 17% 33%

One More Problem

Takes too long to run:
Pentium 4: 150 minutes
Itanium 2: 128 minutes
Opteron: 149 minutes

How to cut down on this?
HPCC would like our
benchmark to run in 5 minutes

Test fewer problem dimensions
The largest ones do not give any extra

information
Test fewer NNZ/row

Once dimension gets large enough,
small variations in NNZ/row have little
effect

These decisions are all made by a
runtime estimation algorithm

Benchmark SpMV data supports
this

Cutting Runtime

Sample graphs of benchmark SpMV for 1x1
and 3x3 blocked matrices

Output Comparison

Unblocked Blocked
Max Median Max Median

Pentium 4 692 362 1937 555
(699) (307) (1961) (530)

Itanium 2 442 343 2181 803
(443) (343) (2177) (753)

Opteron 394 188 1178 286
(396) (170) (1178) (273)

Runtime Comparison

Full Shortened
Pentium 4 150 min 3 min
Itanium 2 128 min 3 min
Opteron 149 min 3 min

Conclusions and Directions
for the Future

 SpMV is hard to benchmark because performance
varies greatly depending on the matrix

 Carefully chosen synthetic matrices can be used to
approximate SpMV

 A benchmark that reports one number and runs
quickly is harder, but we can do reasonably well by
looking at the median

 In the future:
 Tighter maximum numbers
 Parallel version

 Software available at http://bebop.cs.berkeley.edu

