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Outline

What is Sparse Matrix-Vector 
Multiply (SpMV)? Why benchmark it?

How to benchmark it?
Past approaches
Our approach

Results
Conclusions and directions for future 

work



  

SpMV

Sparse Matrix-(dense)Vector Multiply
Multiply a dense vector by a sparse matrix 

(one whose entries are mostly zeroes)
Why do we need a benchmark?

SpMV is an important kernel in scientific 
computation

Vendors need to know how well their 
machines perform it

Consumers need to know which machines to 
buy

Existing benchmarks do a poor job of 
approximating SpMV



  

Existing Benchmarks

The most widely used method for ranking 
computers is still the LINPACK benchmark, 
used exclusively by the Top 500 
supercomputer list

Benchmark suites like the High Performance 
Computing Challenge (HPCC) Suite seek to 
change this by including other benchmarks

Even the benchmarks in HPCC do not model 
SpMV however

This work is proposed for inclusion into the 
HPCC suite



  

Benchmarking SpMV is hard!

Issues to consider:
Matrix formats
Memory access patterns
Performance optimizations and why 

we need to benchmark them

Preexisting benchmarks that 
perform SpMV do not take all of 
this into account



  

Matrix Formats

We store only the nonzero entries 
in sparse matrices

This leads to multiple ways of 
storing the data, based on how we 
index it
Coordinate, CSR, CSC, ELLPACK,…

Use Compressed Sparse Row (CSR) 
as our baseline format as it 
provides best overall unoptimized 
performance across many 
architectures



  

CSR SpMV Example

(M,N) = (4,5)

NNZ = 8

row_start:

(0,2,4,6,8)

col_idx:

(0,1,0,2,1,3,2,4)

values:

(1,2,3,4,5,6,7,8)



  

Memory Access Patterns

 Unlike dense case, memory access patterns differ 
for matrix and vector elements
 Matrix elements: unit stride
 Vector elements: indirect access for the source vector 

(the one multiplied by the matrix)
 This leads us to propose three categories for 

SpMV problems:
 Small: everything fits in cache
 Medium: source vector fits in cache, matrix does not
 Large: source vector does not fit in cache

 These categories will exercise the memory 
hierarchy differently and so may perform 
differently



  

Examples from Three 
Platforms

Intel Pentium 4
2.4 GHz
512 KB cache

Intel Itanium 2
1 GHz
3 MB cache

AMD Opteron
1.4 GHz
1 MB cache

Data collected 
using a test suite 
of 275 matrices 
taken from the 
University of 
Florida Sparse 
Matrix Collection

Performance is 
graphed vs. 
problem size



  

horizontal axis = matrix dimension or 
vector length

vertical axis = density in nnz/row

colored dots represent unoptimized 
performance of real matrices



  

Performance Optimizations
 Many different optimizations possible
 One family of optimizations involves blocking the matrix to 

improve reuse at a particular level of the memory hierarchy
 Register blocking - very often useful
 Cache blocking - not as useful

 Which optimizations to use?
 HPCC framework allows significant optimization by the user - we 

don’t want to go as far
 Automatic tuning at runtime permits a reasonable comparison 

of architectures, by trying the same optimizations on each one
 We will use only the register-blocking optimization (BCSR), 

which is implemented in the OSKI automatic tuning system for 
sparse matrix kernels developed at Berkeley

 Prior research has found register blocking to be applicable to a 
number of real-world matrices, particularly ones from finite 
element applications



  

Both unoptimized and 
optimized SpMV matter

Why we need to measure optimized SpMV:
 Some platforms benefit more from performance tuning than 

others
 In the case of the tested platforms, Itanium 2 and Opteron 

gain vs. P4 when we tune using OSKI

Why we need to measure unoptimized SpMV:
 Some SpMV problems are more resistant to optimization
 To be effective, register blocking needs a matrix with a 

dense block structure
 Not all sparse matrices have one

Graphs on next slide illustrate this



  

horizontal axis = matrix dimension or 
vector length

vertical axis = density in nnz/row

blank dots represent real matrices 
that OSKI could not tune due to lack 
of a dense block structure

colored dots represent speedups 
obtained by OSKI’s tuning



  

So what do we do?

 We have a large search space of matrices to 
examine

 We could just do lots of SpMV on real-world 
matrices. However
 It’s not portable. Several GB to store and transport. Our 

test suite takes up 8.34 GB of space
 Appropriate set of matrices is always changing as 

machines grow larger

 Instead, we can randomly generate sparse 
matrices that mirror real-world matrices by 
matching certain properties of these matrices



  

Matching Real Matrices 
With Synthetic Ones

 Randomly generated matrices for each of 275 
matrices taken from the Florida collection

 Matched real matrices in dimension, density 
(measured in NNZ/row), blocksize, and 
distribution of nonzero entries

 Nonzero distribution was measured for each 
matrix by looking at what fraction of nonzero 
entries are in bands a certain percentage away 
from the main diagonal



  

Band Distribution 
Illustration

What proportion of the 
nonzero entries fall into 
each of these bands 1-5?

We use 10 bands instead of 
5, but have shown 5 for 
simplicity. 



  

In these graphs, real matrices are 
denoted by a red R, and synthetic 
matrices by a green S. Real 
matrices are connected by a line 
whose color indicates which matrix 
was faster to the synthetic matrices 
created to approximate them.



  



  

Remaining Issues
 We’ve found a reasonable way to model real 

matrices, but benchmark suites want less 
output. HPCC wants us to report only a few 
numbers, preferably just one

 Challenges in getting there
 As we’ve seen, SpMV performance depends greatly on 

the matrix, and there is a large range of problem sizes. 
How do we capture this all? Stats on Florida matrices:
Dimension ranges from a few hundred to over a million
NNZ/row ranges from 1 to a few hundred

 How to capture performance of matrices with small 
dense blocks that benefit from register blocking?

 What we’ll do:
 Bound the set of synthetic matrices we generate
 Determine which numbers to report that we feel 

capture the data best



  

Bounding the Benchmark Set
 Limit to square matrices
 Look over only a certain range of problem dimensions 

and NNZ/row
 Since dimension range is so huge, restrict dimension to 

powers of 2
 Limit blocksizes tested to ones in {1,2,3,4,6,8} x 

{1,2,3,4,6,8}
 These were the most common ones encountered in prior 

research with matrices that mostly had dense block 
structures

 Here are the limits based on the matrix test suite:
 Dimension <= 2^20 (a little over one million)
 24 <= NNZ/row <= 34 (avg. NNZ/row for real matrix test 

suite is 29)
 Generate matrices with nonzero entries distributed 

(band distribution) based on statistics for the test suite 
as a whole



  

Condensing the Data

 This is a lot of data
 11 x 12 x 36 = 4752 matrices to run

 Tuned and untuned cases are separated, as they 
highlight differences between platforms
 Untuned data will only come from unblocked matrices
 Tuned data will come from the remaining (blocked) 

matrices

 In each case (blocked and unblocked), report the 
maximum and median MFLOP rates to capture 
small/medium/large behavior

 When forced to report one number, report the 
blocked median



  

Output

Unblocked Blocked
Max Median Max Median

Pentium 4 699 307 1961 530
Itanium 2 443 343 2177 753
Opteron 396 170 1178 273

(all numbers MFLOP/s)



  

How well does the 
benchmark approximate 
real SpMV performance? 

These graphs show the 
benchmark numbers as 
horizontal lines versus the 
real matrices which are 
denoted by circles.  



  



  

Output

Matrices generated by the benchmark 
fall into small/medium/large categories 
as follows:

Pentium 4 Itanium 2 Opteron

Small 17% 33% 23%

Medium 42% 50% 44%

Large 42% 17% 33%



  

One More Problem

Takes too long to run:
Pentium 4: 150 minutes
Itanium 2: 128 minutes
Opteron: 149 minutes

How to cut down on this? 
HPCC would like our 
benchmark to run in 5 minutes



  

Test fewer problem dimensions
The largest ones do not give any extra 

information
Test fewer NNZ/row

Once dimension gets large enough, 
small variations in NNZ/row have little 
effect

These decisions are all made by a 
runtime estimation algorithm

Benchmark SpMV data supports 
this

Cutting Runtime



  

Sample graphs of benchmark SpMV for 1x1 
and 3x3 blocked matrices



  

Output Comparison

Unblocked Blocked
Max Median Max Median

Pentium 4 692 362 1937 555
(699) (307) (1961) (530)

Itanium 2 442 343 2181 803
(443) (343) (2177) (753)

Opteron 394 188 1178 286
(396) (170) (1178) (273)



  

Runtime Comparison

Full Shortened
Pentium 4 150 min 3 min
Itanium 2 128 min 3 min
Opteron 149 min 3 min



  

Conclusions and Directions 
for the Future

 SpMV is hard to benchmark because performance 
varies greatly depending on the matrix

 Carefully chosen synthetic matrices can be used to 
approximate SpMV

 A benchmark that reports one number and runs 
quickly is harder, but we can do reasonably well by 
looking at the median

 In the future:
 Tighter maximum numbers
 Parallel version

 Software available at http://bebop.cs.berkeley.edu


