Benchmarking Sparse
Matrix-Vector Multiply
In 5 Minutes

Hormozd Gahvari, Mark Hoemmen,
James Demmel, and Kathy Yelick

January 21, 2007



+What ector
nchmark it?

‘r future



SpMV

+ Sparse Matrix-(dense)Vector Multiply
+ Multiply a dense vector by a sparse matrix
(one whose entries are mostly zeroes)
+Why do we need a benchmark?

+SpMV is an important kernel in scientific
computation

+Vendors need to know how well their
machines perform it

+ Consumers need to know which machines to
buy

+ Existing benchmarks do a poor job of
approximating SpMV



Existing Benchmarks

+ The most widely used method for ranking
computers is still the LINPACK benchmark,
used exclusively by the Top 500
supercomputer list

+ Benchmark suites like the High Performance
Computing Challenge (HPCC) Suite seek to
change this by including other benchmarks

+ Even the benchmarks in HPCC do not model
SpMV however

+ This work is proposed for inclusion into the
HPCC suite



Benchmarking SpMV is hard!

+Issues to consider:
+ Matrix formats
+Memory access patterns

+Performance optimizations and why
we need to benchmark them

+Preexisting benchmarks that
perform SpMV do not take all of
this into account



Matrix Formats

+ We store only the nonzero entries
INn sparse matrices

+ This leads to multiple ways of
storing the data, based on how we
index it
+ Coordinate, CSR, CSC, ELLPACK,...

+ Use Compressed Sparse Row (CSR)
as our baseline format as it
provides best overall unoptimized
performance across many
architectures






Memory Access Patterns

+ Unlike dense case, memory access patterns differ
for matrix and vector elements
+ Matrix elements: unit stride
+ Vector elements: indirect access for the source vector
(the one multiplied by the matrix)
+ This leads us to propose three categories for
SpMV problems:
+ Small: everything fits in cache
+ Medium: source vector fits in cache, matrix does not
+ Large: source vector does not fit in cache

+ These categories will exercise the memory
hierarchy differently and so may perform
differently



Examples from Three

Platforms
+ Intel Pentium 4 + Data collected
+2.4 GHz using a test suite

of 275 matrices
taken from the
University of

+512 KB cache
+ Intel Itanium 2

* =
+é a:zcache Florida Sparse
+AMD Opt Matrix Collection
+1 Gﬂ T +Performance is
i graphed vs.

+1 MB cache problem size



Untuned Performance (MFLOP/s) of Real Matrices, P4 Untuned Performance (MFLOP/s) of Real Matrices, Itanium 2

medium o © e © © P large arge

10
O (6]
E % o o ©
Tél 1 ™Y o
.. ‘.‘ @ .r‘
o®
10°

dimension

Untuned Performance (MFLOP/s) of Real Matrices, Opteron

medium o e e © © © large

horizontal axis = matrix dimension or

0 vector length
: A vertical axis = density in nnz/row
Ero ¢ colored dots represent unoptimized
. performance of real matrices
10°

dimension



Performance Optimizations

+ Many different optimizations possible
+ One family of optimizations involves blocking the matrix to
improve reuse at a particular level of the memory hierarchy
+ Register blocking - very often useful
+ Cache blocking - not as useful

+ Which optimizations to use?

+ HPCC framework allows significant optimization by the user - we
don’t want to go as far

+ Automatic tuning at runtime permits a reasonable comparison
of architectures, by trying the same optimizations on each one

+ We will use only the register-blocking optimization (BCSR),
which is implemented in the OSKI automatic tuning system for
sparse matrix kernels developed at Berkeley

+ Prior research has found register blocking to be applicable to a
number of real-world matrices, particularly ones from finite
element applications



Both unoptimized and
optimized SpMV matter

+Why we need to measure optimized SpMV:

+ Some platforms benefit more from performance tuning than
others

+ In the case of the tested platforms, Itanium 2 and Opteron
gain vs. P4 when we tune using OSKI

+Why we need to measure unoptimized SpMV:

+ Some SpMV problems are more resistant to optimization

+ To be effective, register blocking needs a matrix with a
dense block structure

+ Not all sparse matrices have one
+ Graphs on next slide illustrate this



Speedups Obtained by Tuning Real Matrices, P4

medium

o

Q @] o @)

large

Speedups Obtained by Tuning Real Matrices, Opteron

medium

(@]

large

dimension

1.71

1.59

1.47

1.35

1.23

1.85

1.64

1.42

1.21

Speedups Obtained by Tuning Real Matrices, ltanium 2

arge

dimension

horizontal axis = matrix dimension or
vector length

vertical axis = density in nnz/row

blank dots represent real matrices
that OSKI could not tune due to lack

of a dense block structure
|

colored dots represent speedups
obtained by OSKI’s tuning

1.99

1.74

1.49

1.24




So what do we do?

+ We have a large search space of matrices to
examine

+ We could just do lots of SpMV on real-world
matrices. However

+ It's not portable. Several GB to store and transport. Our
test suite takes up 8.34 GB of space

+ Appropriate set of matrices is always changing as
machines grow larger
+ Instead, we can randomly generate sparse
matrices that mirror real-world matrices by
matching certain properties of these matrices



Matching Real Matrices
With Synthetic Ones

+ Randomly generated matrices for each of 275
matrices taken from the Florida collection

+ Matched real matrices in dimension, density
(measured in NNZ/row), blocksize, and
distribution of nonzero entries

+ Nonzero distribution was measured for each
matrix by looking at what fraction of nonzero
entries are in bands a certain percentage away
from the main diagonal



Band Distribution
[llustration

N

What proportion of the
nonzero entries fall into
each of these bands 1-57

We use 10 bands instead of
5, but have shown 5 for
simplicity.



Real vs. Synthetic Matrices, Untuned, P4 Real vs. Synthetic Matrices, Untuned, ltanium 2

ilarge

medium

medium ilarge
1

50 100 150 200 250
Matrices Sorted by Problem Size

50 100 150
Matrices Sorted by Problem Size

In these graphs, real matrices are

denoted by a red R, and synthetic

matrices by a green S. Real

matrices are connected by a line

whose color indicates which matrix
. was faster to the synthetic matrices
. created to approximate them.

50 100 150 200
Matrices Sorted by Problem Size



MFLOP/s

1400

1200

1000

800%

600

4001

2001

small

Real vs. Synthetic Matrices, Tuned, P4

medium

-----{.5—-33----------

large

10 20 30 40
Matrices Sorted by Problem Size

50

MFLOP/s

1100
10001

i zﬁgl

7001
6001
i ]
4001

3001
2001
1001

900
800

small

Real vs. Synthetic Matrices, Tuned, Opteron

medium

i

3 BB?Bisiﬁ@@@@@EEI@@E@E@@i@@ﬂ@@@@j@ 0

|

10 20 30 40
Matrices Sorted by Problem Size

50

large

MFLOP/s

1400+

1200+

1000,

800+

600

400f

200x

Real vs. Synthetic Matrices, Tuned, Itanium 2

f1obe 335@111% NN

medium

- w—=

20 30 40 50 60
Matrices Sorted by Problem Size

large




Remaining Issues

+ We've found a reasonable way to model real
matrices, but benchmark suites want less
output. HPCC wants us to report only a few
numbers, preferably just one

+ Challenges in getting there

+ As we've seen, SpMV performance depends greatly on
the matrix, and there is a large range of problem sizes.
How do we capture this all? Stats on Florida matrices:

+ Dimension ranges from a few hundred to over a million
+ NNZ/row ranges from 1 to a few hundred

+ How to capture performance of matrices with small
dense blocks that benefit from register blocking?

+ What we’ll do:

+ Bound the set of synthetic matrices we generate

+ Determine which numbers to report that we feel
capture the data best



Bounding the Benchmark Set

+ Limit to square matrices

+ Look over only a certain range of problem dimensions
and NNZ/row
+ Since dimension range is so huge, restrict dimension to
powers of 2
+ Limit blocksizes tested to ones in {1,2,3,4,6,8} X
{1I2I3I4I6I8}
+ These were the most common ones encountered in prior

research with matrices that mostly had dense block
structures

+ Here are the limits based on the matrix test suite:
+ Dimension <= 2220 (a little over one million)
+ 24 <= NNZ/row <= 34 (avg. NNZ/row for real matrix test
suite is 29)
+ Generate matrices with nonzero entries distributed
(band distribution) based on statistics for the test suite
as a whole



Condensing the Data

+ This is a lot of data
+ 11 x12 x 36 = 4752 matrices to run

+ Tuned and untuned cases are separated, as they
highlight differences between platforms
+ Untuned data will only come from unblocked matrices
+ Tuned data will come from the remaining (blocked)

matrices

+ In each case (blocked and unblocked), report the
maximum and median MFLOP rates to capture
small/medium/large behavior

+ When forced to report one number report the
blocked median






MFLOP/s

-y
N
(=]
o

Benchmark vs. Real Matrices, Unblocked, P4

medium

median

100 150 200
Matrices Sorted by Problem Size

Benchmark vs. Real Matrices, Blocked, P4

medium

30 40
Matrices Sorted by Problem Size

How well does the
benchmark approximate
real SpMV performance?

These graphs show the
benchmark numbers as
horizontal lines versus the
real matrices which are
denoted by circles.



Benchmark vs. Real Matrices, Unblocked, Opteron

Matrices Sorted by Problem Size

Benchmark vs. Real Matrices, Unblocked, Itanium 2

Matrices Sorted by Problem Size

450 450 o : : h
~ o ! medium ' qu;xc
© o O O 1 1
400~ —L - L—pench 400+ : :
o 5 ] medium ' max o ® “% g '
@ ] [} O @D
3500 0 00800 o5 X 350% a8 ' © o O0 o
& E” g ] - — O —bench
o= ag” OOO% b © ' o 0od4 O o o O ! median
[}
300" o, %c?% @85 o 6 : 300~ o ® o0g 5 ° % So
@) o o O (i)o O 1 O I 1
§ 250r OOO o © OO o9 OOCS:) O © : é 2501 (%% oo % 6)@ © OO O: (% "o :@
O ot 1
™ 200%300 oo °° o1 Q@@%% C%OO@ o?%f@ i 200+ oo OOO@%% 0 %0 O : % o % :
= ye : o ® @59 030 @ = o@g ®00q0° d 00 4 &4
e : @5 ——bench ® © o %3 o 9 °, o0 o
150~ o X ' @median 150 Q)%O’QDOO o o ! .
1 10 o) @ 00 1 | @]
L 1 1 L 1 (?
100 : o o 100}, : .
%O 1 1 o © O 1 1
501 ' ! 50ismall ! 'large
small X \large gmallo @0 O !
0 1 1 1 1 L J 0 1 1 1 1 1 J
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Matrices Sorted by Problem Size Matrices Sorted by Problem Size
Benchmark vs. Real Matrices, Blocked, Opteron Benchmark vs. Real Matrices, Blocked, Itanium 2
1200+ i - . bench 25001
1 medium 1 max
1 1
1
1000F : | : medium pench
: : 2000 B 1 1
I ]
, o : : :
800 O 1 1
S - : :
® o ' ' » 1500+ , '
o £ : : o 1 1
g 600+ 1o :O : 9 X X
E 1 1 | E O ! 1
OIS oo : 1000+ X X
400+ o ' ' o o o @ - :
¢ 02 : 100 0 Qo . ,° '?nen§ n
'OQOOW@PQOCQO@%N{QGG)OO co oo 1 O 0o 09 "mmp“oo omnedian
v = r—bench 0®O Py, o &
200 1 1 median 500~ , o o
: . 7o ' ° o oo,
O 1
1 1 O
0 Small L : 1 1 L 1 : Iarge\ 0 - Sma" 1 L : 1 1 1 1 : Ia.r.lge
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70



benchmark
e categories

+ Matri
fall int
as foll

Opteron
Small 23%

Medium 449,

Larg 33%



blem

Inutes



Cutting Runtime

+ Test fewer problem dimensions

+The largest ones do not give any extra
information

+ Test fewer NNZ/row

+ Once dimension gets large enough,
small variations in NNZ/row have little
effect

+ These decisions are all made by a
runtime estimation algorithm

+Benchmark SpMV data supports
this



Performance of Benchmark Matrices, Itanium 2, Unblocked Performance of Benchmark Matrices, Itanium 2, 3x3 Blocks

MFLOP/s

Sample graphs of benchmark SpMV for 1x1
and 3x3 blocked matrices



Pentium 4

Itanium 2



rison

ortened

Pentiu 3 min
[taniu \ 3 min
Optero -3 min



Conclusions and Directions
for the Future

+ SpMV is hard to benchmark because performance
varies greatly depending on the matrix

+ Carefully chosen synthetic matrices can be used to
approximate SpMV

+ A benchmark that reports one number and runs
quickly is harder, but we can do reasonably well by
looking at the median

+ In the future:

+ Tighter maximum numbers
+ Parallel version

+ Software available at http: //bebop cs.berkeley.edu



