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SpMV

+ Sparse Matrix-(dense)Vector Multiply
+ Multiply a dense vector by a sparse matrix
(one whose entries are mostly zeroes)
+Why do we need a benchmark?

+SpMV is an important kernel in scientific
computation

+Vendors need to know how well their
machines perform it

+ Consumers need to know which machines to
buy

+ Existing benchmarks do a poor job of
approximating SpMV



Existing Benchmarks

+ The most widely used method for ranking
computers is still the LINPACK benchmark,
used exclusively by the Top 500
supercomputer list

+ Benchmark suites like the High Performance
Computing Challenge (HPCC) Suite seek to
change this by including other benchmarks

+ Even the benchmarks in HPCC do not model
SpMV however

+ This work is proposed for inclusion into the
HPCC suite



Benchmarking SpMV is hard!

+Issues to consider:
+ Matrix formats
+Memory access patterns

+Performance optimizations and why
we need to benchmark them

+Preexisting benchmarks that
perform SpMV do not take all of
this into account



Matrix Formats

+ We store only the nonzero entries
INn sparse matrices

+ This leads to multiple ways of
storing the data, based on how we
index it
+ Coordinate, CSR, CSC, ELLPACK,...

+ Use Compressed Sparse Row (CSR)
as our baseline format as it
provides best overall unoptimized
performance across many
architectures






Memory Access Patterns

+ Unlike dense case, memory access patterns differ
for matrix and vector elements
+ Matrix elements: unit stride
+ Vector elements: indirect access for the source vector
(the one multiplied by the matrix)
+ This leads us to propose three categories for
SpMV problems:
+ Small: everything fits in cache
+ Medium: source vector fits in cache, matrix does not
+ Large: source vector does not fit in cache

+ These categories will exercise the memory
hierarchy differently and so may perform
differently



Examples from Three

Platforms
+ Intel Pentium 4 + Data collected
+2.4 GHz using a test suite

of 275 matrices
taken from the
University of

+512 KB cache
+ Intel Itanium 2
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Performance Optimizations

+ Many different optimizations possible
+ One family of optimizations involves blocking the matrix to
improve reuse at a particular level of the memory hierarchy
+ Register blocking - very often useful
+ Cache blocking - not as useful

+ Which optimizations to use?

+ HPCC framework allows significant optimization by the user - we
don’t want to go as far

+ Automatic tuning at runtime permits a reasonable comparison
of architectures, by trying the same optimizations on each one

+ We will use only the register-blocking optimization (BCSR),
which is implemented in the OSKI automatic tuning system for
sparse matrix kernels developed at Berkeley

+ Prior research has found register blocking to be applicable to a
number of real-world matrices, particularly ones from finite
element applications



Both unoptimized and
optimized SpMV matter

+Why we need to measure optimized SpMV:

+ Some platforms benefit more from performance tuning than
others

+ In the case of the tested platforms, Itanium 2 and Opteron
gain vs. P4 when we tune using OSKI

+Why we need to measure unoptimized SpMV:

+ Some SpMV problems are more resistant to optimization

+ To be effective, register blocking needs a matrix with a
dense block structure

+ Not all sparse matrices have one
+ Graphs on next slide illustrate this
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So what do we do?

+ We have a large search space of matrices to
examine

+ We could just do lots of SpMV on real-world
matrices. However

+ It's not portable. Several GB to store and transport. Our
test suite takes up 8.34 GB of space

+ Appropriate set of matrices is always changing as
machines grow larger
+ Instead, we can randomly generate sparse
matrices that mirror real-world matrices by
matching certain properties of these matrices



Matching Real Matrices
With Synthetic Ones

+ Randomly generated matrices for each of 275
matrices taken from the Florida collection

+ Matched real matrices in dimension, density
(measured in NNZ/row), blocksize, and
distribution of nonzero entries

+ Nonzero distribution was measured for each
matrix by looking at what fraction of nonzero
entries are in bands a certain percentage away
from the main diagonal



Band Distribution
[llustration

N

What proportion of the
nonzero entries fall into
each of these bands 1-57

We use 10 bands instead of
5, but have shown 5 for
simplicity.
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Remaining Issues

+ We've found a reasonable way to model real
matrices, but benchmark suites want less
output. HPCC wants us to report only a few
numbers, preferably just one

+ Challenges in getting there

+ As we've seen, SpMV performance depends greatly on
the matrix, and there is a large range of problem sizes.
How do we capture this all? Stats on Florida matrices:

+ Dimension ranges from a few hundred to over a million
+ NNZ/row ranges from 1 to a few hundred

+ How to capture performance of matrices with small
dense blocks that benefit from register blocking?

+ What we’ll do:

+ Bound the set of synthetic matrices we generate

+ Determine which numbers to report that we feel
capture the data best



Bounding the Benchmark Set

+ Limit to square matrices

+ Look over only a certain range of problem dimensions
and NNZ/row
+ Since dimension range is so huge, restrict dimension to
powers of 2
+ Limit blocksizes tested to ones in {1,2,3,4,6,8} X
{1I2I3I4I6I8}
+ These were the most common ones encountered in prior

research with matrices that mostly had dense block
structures

+ Here are the limits based on the matrix test suite:
+ Dimension <= 2220 (a little over one million)
+ 24 <= NNZ/row <= 34 (avg. NNZ/row for real matrix test
suite is 29)
+ Generate matrices with nonzero entries distributed
(band distribution) based on statistics for the test suite
as a whole



Condensing the Data

+ This is a lot of data
+ 11 x12 x 36 = 4752 matrices to run

+ Tuned and untuned cases are separated, as they
highlight differences between platforms
+ Untuned data will only come from unblocked matrices
+ Tuned data will come from the remaining (blocked)

matrices

+ In each case (blocked and unblocked), report the
maximum and median MFLOP rates to capture
small/medium/large behavior

+ When forced to report one number report the
blocked median
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How well does the
benchmark approximate
real SpMV performance?

These graphs show the
benchmark numbers as
horizontal lines versus the
real matrices which are
denoted by circles.
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Cutting Runtime

+ Test fewer problem dimensions

+The largest ones do not give any extra
information

+ Test fewer NNZ/row

+ Once dimension gets large enough,
small variations in NNZ/row have little
effect

+ These decisions are all made by a
runtime estimation algorithm

+Benchmark SpMV data supports
this



Performance of Benchmark Matrices, Itanium 2, Unblocked Performance of Benchmark Matrices, Itanium 2, 3x3 Blocks

MFLOP/s

Sample graphs of benchmark SpMV for 1x1
and 3x3 blocked matrices
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Conclusions and Directions
for the Future

+ SpMV is hard to benchmark because performance
varies greatly depending on the matrix

+ Carefully chosen synthetic matrices can be used to
approximate SpMV

+ A benchmark that reports one number and runs
quickly is harder, but we can do reasonably well by
looking at the median

+ In the future:

+ Tighter maximum numbers
+ Parallel version

+ Software available at http: //bebop cs.berkeley.edu



