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Abstract— The HPC Challenge1 benchmark suite has been
released by the DARPA HPCS program to help define the
performance boundaries of future Petascale computing systems.
HPC Challenge is a suite of tests that examine the performance
of HPC architectures using kernels with memory access patterns
more challenging than those of the High Performance Lin-
pack (HPL) benchmark used in the Top500 list. Thus, the suite is
designed to augment the Top500 list, providing benchmarks that
bound the performance of many real applications as a function of
memory access characteristics e.g., spatial and temporal locality,
and providing a framework for including additional tests. In
particular, the suite is composed of several well known compu-
tational kernels (STREAM, HPL, matrix multiply – DGEMM,
parallel matrix transpose – PTRANS, FFT, RandomAccess,
and bandwidth/latency tests – b eff) that attempt to span high
and low spatial and temporal locality space. By design, the
HPC Challenge tests are scalable with the size of data sets being
a function of the largest HPL matrix for the tested system.

I. HIGH PRODUCTIVITY COMPUTING SYSTEMS

The DARPA High Productivity Computing
Systems (HPCS) [1] is focused on providing a new generation
of economically viable high productivity computing systems
for national security and for the industrial user community.
HPCS program researchers have initiated a fundamental
reassessment of how we define and measure performance,
programmability, portability, robustness and ultimately,
productivity in the High End Computing (HEC) domain.

The HPCS program seeks to create trans-petaflops systems
of significant value to the Government HPC community. Such
value will be determined by assessing many additional factors
beyond just theoretical peak flops (floating-point operations).
Ultimately, the goal is to decrease the time-to-solution, which
means decreasing both the execution time and development
time of an application on a particular system. Evaluating the
capabilities of a system with respect to these goals requires
a different assessment process. The goal of the HPCS as-
sessment activity is to prototype and baseline a process that
can be transitioned to the acquisition community for 2010
procurements. As part of this effort we are developing a
scalable benchmark for the HPCS systems.

The basic goal of performance modeling is to measure, pre-
dict, and understand the performance of a computer program
or set of programs on a computer system. The applications
of performance modeling are numerous, including evaluation
of algorithms, optimization of code implementations, parallel

1This work was supported in part by the DARPA, NSF, and DOE through
the DARPA HPCS program under grant FA8750-04-1-0219.

library development, and comparison of system architectures,
parallel system design, and procurement of new systems.

This paper is organized as follows: sections II and III give
motivation and overview of HPC Challenge while section IV
provides more detailed description of the HPC Challenge
tests and section V talks briefly about the scalability of
the tests; sections VI, VII, and VIII describe the rules, the
software installation process and some of the current results,
respectively. Finally, section IX concludes the paper.

II. MOTIVATION

The DARPA High Productivity Computing Systems (HPCS)
program has initiated a fundamental reassessment of how we
define and measure performance, programmability, portability,
robustness and, ultimately, productivity in the HPC domain.
With this in mind, a set of computational kernels was needed
to test and rate a system. The HPC Challenge suite of
benchmarks consists of four local (matrix-matrix multiply,
STREAM, RandomAccess and FFT) and four global (High
Performance Linpack – HPL, parallel matrix transpose –
PTRANS, RandomAccess and FFT) kernel benchmarks.
HPC Challenge is designed to approximately bound computa-
tions of high and low spatial and temporal locality (see Fig. 1).
In addition, because HPC Challenge kernels consist of simple
mathematical operations, this provides a unique opportunity to
look at language and parallel programming model issues. In
the end, the benchmark is to serve both the system user and
designer communities [2].

III. THE BENCHMARK TESTS

This first phase of the project have developed, hardened,
and reported on a number of benchmarks. The collection of
tests includes tests on a single processor (local) and tests over
the complete system (global). In particular, to characterize the
architecture of the system we consider three testing scenarios:

1) Local – only a single processor is performing computa-
tions.

2) Embarrassingly Parallel – each processor in the entire
system is performing computations but they do not
communicate with each other explicitly.

3) Global – all processors in the system are performing
computations and they explicitly communicate with each
other.

The HPC Challenge benchmark consists at this time of 7
performance tests: HPL [3], STREAM [4], RandomAccess,
PTRANS, FFT (implemented using FFTE [5]), DGEMM [6],
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Fig. 1. Targeted application areas in the memory access locality space.

[7] and b eff (MPI latency/bandwidth test) [8], [9], [10]. HPL
is the Linpack TPP (toward peak performance) benchmark.
The test stresses the floating point performance of a system.
STREAM is a benchmark that measures sustainable memory
bandwidth (in Gbyte/s), RandomAccess measures the rate
of random updates of memory. PTRANS measures the rate of
transfer for large arrays of data from multiprocessor’s memory.
Latency/Bandwidth measures (as the name suggests) latency
and bandwidth of communication patterns of increasing com-
plexity between as many nodes as is time-wise feasible.

Many of the aforementioned tests were widely used before
HPC Challenge was created. At first, this may seemingly make
our benchmark merely a packaging effort. However, almost
all components of HPC Challenge were augmented from their
original form to provide consistent verification and reporting
scheme. We should also stress the importance of running these
very tests on a single machine and have the results available at
once. The tests were useful separately for the HPC community
before and with the unified HPC Challenge framework they
create an unprecedented view of performance characterization
of a system – a comprehensive view that captures the data
under the same conditions and allows for variety of analysis
depending on end user needs.

Each of the included tests examines system performance for
various points of the conceptual spatial and temporal locality
space shown in Fig. 1. The rationale for such selection of
tests is to measure performance bounds on metrics important
to HPC applications. The expected behavior of the applications
is to go through various locality space points during runtime.
Consequently, an application may be represented as a point in
the locality space being an average (possibly time-weighed) of
its various locality behaviors. Alternatively, a decomposition
can be made into time-disjoint periods in which the applica-
tion exhibits a single locality characteristic. The application’s
performance is then obtained by combining the partial results
from each period.

Another aspect of performance assessment addressed by
HPC Challenge is ability to optimize benchmark code. For
that we allow two different runs to be reported:

• Base run done with provided reference implementation.

• Optimized run that uses architecture specific optimiza-
tions.

The base run, in a sense, represents behavior of legacy code
because it is conservatively written using only widely available
programming languages and libraries. It reflects a commonly
used approach to parallel processing sometimes referred to
as hierarchical parallelism that combines Message Passing
Interface (MPI) with threading from OpenMP. At the same
time we recognize the limitations of the base run and hence
we allow (or even encourage) optimized runs to be made.
The optimizations may include alternative implementations in
different programming languages using parallel environments
available specifically on the tested system. To stress the pro-
ductivity aspect of the HPC Challenge benchmark, we require
that the information about the changes made to the original
code be submitted together with the benchmark results. While
we understand that full disclosure of optimization techniques
may sometimes be impossible to obtain (due to for example
trade secrets) we ask at least for some guidance for the
users that would like to use similar optimizations in their
applications.

IV. BENCHMARK DETAILS

Almost all tests included in our suite operate on either
matrices or vectors. The size of the former we will denote
below as n and the latter as m. The following holds throughout
the tests:

n2 ' m' Available Memory

Or in other words, the data for each test is scaled so that the
matrices or vectors are large enough to fill almost all available
memory.

HPL (High Performance Linpack) is an implementation of
the Linpack TPP (Toward Peak Performance) variant of the
original Linpack benchmark which measures the floating point
rate of execution for solving a linear system of equations. HPL
solves a linear system of equations of order n:

Ax = b; A ∈ Rn×n; x,b ∈ Rn

by first computing LU factorization with row partial pivoting
of the n by n+1 coefficient matrix:

P[A,b] = [[L,U ],y].

Since the row pivoting (represented by the permutation matrix
P) and the lower triangular factor L are applied to b as the
factorization progresses, the solution x is obtained in one step
by solving the upper triangular system:

Ux = y.

The lower triangular matrix L is left unpivoted and the array of
pivots is not returned. The operation count for the factorization
phase is 2

3 n3− 1
2 n2 and 2n2 for the solve phase. Correctness of



the solution is ascertained by calculating the scaled residuals:

‖Ax−b‖∞

ε‖A‖1n
,

‖Ax−b‖∞

ε‖A‖1‖x‖1
, and

‖Ax−b‖∞

ε‖A‖∞‖x‖∞n
,

where ε is machine precision for 64-bit floating-point values
and n is the size of the problem.

DGEMM measures the floating point rate of execution of
double precision real matrix-matrix multiplication. The exact
operation performed is:

C← β C +α AB

where:
A,B,C ∈ Rn×n; α,β ∈ Rn.

The operation count for the multiply is 2n3 and correctness of
the operation is ascertained by calculating the scaled residual:
‖C−Ĉ‖/(ε n‖C‖F) (Ĉ is a result of reference implementation
of the multiplication).

STREAM is a simple benchmark program that measures
sustainable memory bandwidth (in Gbyte/s) and the corre-
sponding computation rate for four simple vector kernels:

COPY: c ← a

SCALE: b ← α c

ADD: c ← a+b

TRIAD: a ← b+α c

where:
a,b,c ∈ Rm; α ∈ R.

As mentioned earlier, we try to operate on large data objects.
The size of these objects is determined at runtime which
contrasts with the original version of the STREAM benchmark
which uses static storage (determined at compile time) and
size. The original benchmark gives the compiler more infor-
mation (and control) over data alignment, loop trip counts, etc.
The benchmark measures Gbyte/s and the number of items
transferred is either 2m or 3m depending on the operation.
The norm of the difference between reference and computed
vectors is used to verify the result: ‖x− x̂‖.

PTRANS (parallel matrix transpose) exercises the commu-
nications where pairs of processors exchange large messages
simultaneously. It is a useful test of the total communications
capacity of the system interconnect. The performed operation
sets a random n by n matrix to a sum of its transpose with
another random matrix:

A← AT +B

where:
A,B ∈ Rn×n.

The data transfer rate (in Gbyte/s) is calculated by dividing
the size of n2 matrix entries by the time it took to perform

the transpose. The scaled residual of the form ‖A− Â‖/(ε n)
verifies the calculation.

RandomAccess measures the rate of integer updates to
random memory locations (GUPS). The operation being per-
formed on an integer array of size m is:

x← f (x)

f : x 7→ (x⊕ai); ai– pseudo-random sequence

where:
f : Zm→ Zm; x ∈ Zm.

The operation count is 4m and since all the operations are in
integral values over GF(2) field they can be checked exactly
with a reference implementation. The verification procedure
allows 1% of the operations to be incorrect (skipped) which
allows loosening concurrent memory update semantics on
shared memory architectures.

FFT measures the floating point rate of execution of double
precision complex one-dimensional Discrete Fourier Trans-
form (DFT) of size m:

Zk←
m

∑
j

z je−2πi jk
m ; 1≤ k ≤ m

where:
z,Z ∈ Cm.

The operation count is taken to be 5m log2 m for the calculation
of the computational rate (in Gflop/s). Verification is done with
a residual ‖x− x̂‖/(ε logm) where x̂ is the result of applying a
reference implementation of inverse transform to the outcome
of the benchmarked code (in infinite-precision arithmetic the
residual should be zero).

Communication bandwidth and latency is a set of tests to
measure latency and bandwidth of a number of simultaneous
communication patterns. The patterns are based on b eff (ef-
fective bandwidth benchmark) – they are slightly different
from the original b eff. The operation count is linearly de-
pendent on the number of processors in the tested system and
the time the tests take depends on the parameters of the tested
network. The checks are built into the benchmark code by
checking data after it has been received.

V. SCALABILITY ISSUES FOR BENCHMARKS WITH
SCALABLE INPUT DATA

A. Notation

The following symbols are used in the formulae:

• P – number of CPUs
• M – total size of system memory
• r – rate of execution (unit: Gflop/s, GUPS, etc.)
• t – time
• N – size of global matrix for HPL and PTRANS
• V – size of global vector for RandomAccess and FFT



B. Assumptions

Memory size per CPU is constant as the system grows. This
assumption based on architectural design of almost all systems
in existence. Hence, the total amount of memory available in
the entire system is linearly proportional to the number of
processors.

For HPL the dominant cost is CPU-related because compu-
tation has higher complexity order than communication: O(n3)
versus O(n2).

C. Scalability of Time to Solution

Time complexity for HPL is O(n3) (the hidden constant
is 2/3) so the time to solution is:

tHPL ∝
N3

rHPL
(1)

Since N is a size of a square matrix then we need to take
square root of available memory:

N ∝
√

M ∝
√

P

The rate of execution for HPL is determined by the number
of processors since computations (rather than communication)
dominates in terms of complexity:

rHPL ∝ P

This leads to:
tHPL ∝

√
P

Time complexity for RandomAccess is O(n) so the time
is:

tRandomAccess ∝
V

rRandomAccess
(2)

The main table for RandomAccess should be as big as half
of the total memory, so we get:

V ∝ M ∝ P

The rate of execution for RandomAccess can be argued to
have various forms:
• If we assume that the interconnect scales with the number

of processors then the rate would also scale:

rRandomAccess ∝ P

• Real-life experience tells that rRandomAccess is dependent
on the interconnect and independent of the number of
processors due to interconnect inefficiency:

rRandomAccess ∝ 1

Even worse, it is also conceivable that the rate is a
decreasing function of processors:

rRandomAccess ∝
1
P

Conservatively assuming that rRandomAccess ∝ 1 it follows that:

tRandomAccess ∝ P

TABLE I
SUBMISSION DATA FOR NUMBER ONE ENTRIES ON THE FIRST AND THE

LATEST EDITIONS OF THE TOP500 LISTS.

Date Rmax Nmax P t
√

P

June 1993 59.7 52224 1024 1591 32
November 2005 280600 1769471 131072 13163 362

TABLE II
COMPUTER SYSTEMS USED IN TESTS. THE RANDOMACCESS NUMBER

WAS OBTAINED DURING EARLY TESTING OF THE CURRENT CODE.

Processor Interconnect GUPS Peak Mem SMP
[GUPS] [Gflop/s] [GiB] [CPU]

Power4 Federation 0.00262 4∗1.7 1 32
Cray X1 2D torus 0.14544 16∗0.8 4 4
Opteron Myrinet 2000 0.00319 2∗1.4 1 2

Itanium 2 NUMAlink 0.00305 4∗1.5 8 4
Xeon InfiniBand 0.00065 2∗2.4 1 2

Peak (per processor) = flops per cycle ∗ frequency
Mem – memory per processor
SMP – number of processors in each SMP node

D. Scalability Tests

It is easy to verify the theoretical framework from the
previous section for the HPL test. Table I shows the relevant
data from the first and the latest editions of the TOP500 list.
The time to solution grew over 8 times while the square
root of processor count grew over 11 times. This amounts
to about 27% error which is relatively good achievement
considering how much has changed during those 12 years
including progress in software (algorithmic improvements) and
hardware (chip architecture, materials, and fabrication).

The computer systems that were used in RandomAccess
initial tests are listed in Table II. The table also shows the ini-
tially obtained RandomAccess number for each system. This
number was used to gauge running time of RandomAccess
in the final version of the code.

Table III shows estimates of time it takes to run HPL
and RandomAccess using the analysis from the previous
section. For a 256-CPU system RandomAccess takes much
longer to run than HPL . The only exception is Cray X1:
is has large amount of memory per CPU which makes for

TABLE III
ESTIMATED TIME IN MINUTES TO PERFORM FULL SYSTEM TEST OF HPL

AND RANDOMACCESS.

Manufacturer System 64 CPUs 256 CPUs
HPL R.A. HPL R.A.

IBM Power4 29.08 108.9 58.1 435.7
Cray X1 123.6 7.8 247.2 31.4
Atipa Opteron 70.6 89.6 141.2 358.4
SGI Itanium 2 745.9 750.0 1491.9 3000.2

Voltaire Xeon 41.2 440.2 82.4 1760.8

R.A.=RandomAccess



longer HPL run and large GUPS number which makes for
short RandomAccess run. One of HPC Challenge’ guiding
principles was not to exceed running time beyond the twice the
HPL’s time. To keep the code in line with this principle meant
reducing the time required by RandomAccess by artificially
terminating the original algorithm and reflecting this change in
the verification procedure. Both of these enhancements have
been implemented in the current version of the code.

VI. RULES FOR RUNNING THE BENCHMARK

There must be one baseline run submitted for each com-
puter system entered in the archive. There may also exist an
optimized run for each computer system.

1) Baseline Runs
Optimizations as described below are allowed.

a) Compile and load options
Compiler or loader flags which are supported and
documented by the supplier are allowed. These
include porting, optimization, and preprocessor in-
vocation.

b) Libraries
Linking to optimized versions of the following
libraries is allowed:
• BLAS
• MPI
Acceptable use of such libraries is subject to the
following rules:
• All libraries used shall be disclosed with the re-

sults submission. Each library shall be identified
by library name, revision, and source (supplier).
Libraries which are not generally available are
not permitted unless they are made available by
the reporting organization within 6 months.

• Calls to library subroutines should have equiva-
lent functionality to that in the released bench-
mark code. Code modifications to accommodate
various library call formats are not allowed.

• Only complete benchmark output may be sub-
mitted – partial results will not be accepted.

2) Optimized Runs
a) Code modification

Provided that the input and output specification is
preserved, the following routines may be substi-
tuted:
• In HPL: HPL pdgesv(),
HPL pdtrsv() (factorization and substitution
functions)

• no changes are allowed in the DGEMM compo-
nent

• In PTRANS: pdtrans()
• In STREAM:
tuned STREAM Copy(),
tuned STREAM Scale(),
tuned STREAM Add(),
tuned STREAM Triad()

• In RandomAccess:
MPIRandomAccessUpdate() and
RandomAccessUpdate()

• In FFT:
fftw malloc(), fftw free(),
fftw one(), fftw mpi(),
fftw create plan(),
fftw destroy plan(),
fftw mpi create plan(),
fftw mpi local sizes(),
fftw mpi destroy plan() (all of these
functions are compatible with FFTW 2.1.5 [11],
[12])

• In b eff component alternative MPI routines
might be used for communication. But only
standard MPI calls are to be performed and only
to the MPI library that is widely available on the
tested system.

b) Limitations of Optimization
i) Code with limited calculation accuracy

The calculation should be carried out in full
precision (64-bit or the equivalent). However
the substitution of algorithms is allowed (see
next).

ii) Exchange of the used mathematical algorithm
Any change of algorithms must be fully dis-
closed and is subject to review by the HPC
Challenge Committee. Passing the verification
test is a necessary condition for such an ap-
proval. The substituted algorithm must be as
robust as the baseline algorithm. For the ma-
trix multiply in the HPL benchmark, Strassen
Algorithm may not be used as it changes the
operation count of the algorithm.

iii) Using the knowledge of the solution
Any modification of the code or input data sets,
which uses the knowledge of the solution or of
the verification test, is not permitted.

iv) Code to circumvent the actual computation
Any modification of the code to circumvent the
actual computation is not permitted.

VII. SOFTWARE DOWNLOAD, INSTALLATION, AND USAGE

The reference implementation of the benchmark may be
obtained free of charge at the benchmark’s web site: http://
icl.cs.utk.edu/hpcc/. The reference implementation
should be used for the base run. The installation of the
software requires creating a script file for Unix’s make(1)
utility. The distribution archive comes with script files for
many common computer architectures. Usually, few changes
to one of these files will produce the script file for a given
platform.

After, a successful compilation the benchmark is ready to
run. However, it is recommended that changes are made to
the benchmark’s input file such that the sizes of data to use
during the run are appropriate for the tested system. The sizes



should reflect the available memory on the system and number
of processors available for computations.

We have collected a comprehensive set of notes on the
HPC Challenge benchmark. They can be found at http:
//icl.cs.utk.edu/hpcc/faq/.

VIII. EXAMPLE RESULTS

Fig. 2 shows a sample rendering of the results web page:
http://icl.cs.utk.edu/hpcc/hpcc results.
cgi. It is impossible to show here all of the results for
nearly 60 systems submitted so far to the web site. The
results database is publicly available at the aforementioned
address and can be exported to Excel spreadsheet or an XML
file. Fig. 3 shows a sample kiviat diagram generated using
the benchmark results. Kiviat diagrams can be generated
at the website and allow easy comparative analysis for
multi-dimensional results from the HPC Challenge database.

IX. CONCLUSIONS

No single test can accurately compare the performance
of HPC systems. The HPC Challenge benchmark test suite
stresses not only the processors, but the memory system and
the interconnect. It is a better indicator of how an HPC system
will perform across a spectrum of real-world applications.
Now that the more comprehensive, informative HPC Challenge
benchmark suite is available, it can be used in preference to
comparisons and rankings based on single tests. The real utility
of the HPC Challenge benchmarks are that architectures can be
described with a wider range of metrics than just flop/s from
HPL. When looking only at HPL performance and the Top500
List, inexpensive build-your-own clusters appear to be much
more cost effective than more sophisticated HPC architectures.
Even a small percentage of random memory accesses in real
applications can significantly affect the overall performance
of that application on architectures not designed to minimize
or hide memory latency. HPC Challenge benchmarks provide
users with additional information to justify policy and pur-
chasing decisions. We expect to expand and perhaps remove
some existing benchmark components as we learn more about
the collection.
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Fig. 2. Sample HPC Challenge results web page.
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