SPECsfs2008_nfs.v3 Result ================================================================================ BlueArc Corporation : BlueArc Mercury 50, Cluster SPECsfs2008_nfs.v3 = 80279 Ops/Sec (Overall Response Time = 3.42 msec) ================================================================================ Performance =========== Throughput Response (ops/sec) (msec) --------------------- ---------------- 7991 1.4 16005 1.7 24024 2.1 32039 2.4 40062 2.9 48108 3.4 56122 4.0 64124 5.0 72328 6.3 80279 10.0 ================================================================================ Product and Test Information ============================ Tested By BlueArc Corporation Product Name BlueArc Mercury 50, Cluster Hardware Available July 2009 Software Available October 2009 Date Tested October 2009 SFS License Number 63 Licensee Locations San Jose, CA, USA The BlueArc Mercury Server is a next generation network storage platform that consolidates multiple applications and simplifies storage management for businesses with mid-range storage requirements. The Mercury platform leverages a hybrid-core architecture that employs both field programmable gate arrays (FPGAs) and traditional multi-core processors to deliver enhanced performance across a variety of application environments, including general purpose file systems, database, messaging and online fixed content. The Mercury server series features 2 models: the Mercury 50 and the Mercury 100, which can scale to 1PB or 2PB of usable data storage respectively, supporting a range of SAS, FC, Nearline SAS and SATA drive technologies. Both servers support simultaneous 1GbE and 10GbE LAN speed access, and 4Gbps FC storage connectivity. Configuration Bill of Materials =============================== Ite m No Qty Type Vendor Model/Name Description --- --- ---- ------ ---------- ----------- 1 2 Server BlueArc SX345260 BlueArc Mercury Server, Model 50 2 6 Disk BlueArc SX345263 RC12C Storage Controller Controller 3 6 Disk BlueArc SX345264 RC12Exp Storage Expansion Expansion 4 12 Disk Drive BlueArc SX345265 RC12 Disk 300GB SAS 15K Drive (12 Pk) 5 2 FC Switch BlueArc SX345120 FC Switch, 4Gbps 16-port w/SFPs 6 1 Server BlueArc SX345268 System Management Unit, Model 200 7 2 Software BlueArc SX435045 Software License (Tier B) - Unix (NFS) 8 2 Software BlueArc SX435053 Software License (Tier B) - Cluster 9 2 Software BlueArc SX435054 Software License (Tier B) - Cluster Namespace Server Software =============== OS Name and Version SU 6.5.1848 Other Software None Filesystem Software SiliconFS 6.5.1848 Server Tuning ============= Name Value Description ---- ----- ----------- cifs_auth off Disable CIFS security authorization fsm cache-bias small- Set metadata cache bias to small files files fs-accessed-time off Accessed time management was turned off shortname off Disable shortname generation for CIFS clients fsm read-ahead 0 Disable file read-ahead security-mode UNIX Security mode is native UNIX Server Tuning Notes ------------------- N/A Disks and Filesystems ===================== Number of Usable Description Disks Size ----------- ------- ---------- 300GB SAS 15K RPM Disk Drives (Seagate ST3450856SS) 144 29.4 TB 160GB SATA 5400 RPM Disk Drives (Hitachi HTE543216L9A300) 4 320.0 GB used for storing the core operating system and management logs. No cache or data storage. Total 148 29.7 TB Number of Filesystems 2 Total Exported Capacity 20TB Filesystem Type WFS-2 Filesystem Creation Options 4K filesystem block size dsb-count (dynamic system block) set at 768 Filesystem Config Each FS spans 9 LUNs of 6+2 RAID 6 Fileset Size 9373.7 GB The storage configuration consisted of 6 RC12 RAID arrays, each with a single RC12C controller and a single RC12E expansion shelf for a total of 12 shelves of storage; each shelf with 12 disk drives. Each array was configured with three 6+2 RAID 6 LUNs. The controller shelf has two 4Gbps FC H-ports connected to the server via a redundant pair of Brocade 200E switches. Each Mercury server is connected to each Brocade 200E via a 4 Gbps FC connection, such that a completely redundant path exists from each server to all storage. The expansion shelves connect to the controller by dual 6Gb/s SAS connections. The two filesystems were aggregated into a single namespace ( /r ) using BlueArc.s Cluster Namespace (CNS) feature. One filesystem was assigned as the primary filesystem to each Mercury server, although both servers can access all filesystems through the active-active cluster link, or directly via the FC SAN in the event of a node failure. Mercury servers have 2 internal mirrored hard disk drives per server which are used to store the core operating software and system logs. These drives are not used for cache space or for storing data. Network Configuration ===================== Number of Ports Item No Network Type Used Notes ------- ------------ ---------------- ----- 1 10 Gigabit Ethernet 2 Integrated 1GbE / 10GbE Ethernet controller Network Configuration Notes --------------------------- One 10GbE network interface per Mercury server was used to connect to a Fujitsu XG2000 switch, which provided connectivity to the clients. The interfaces were configured to use jumbo frames (MTU size of 9000 bytes). Benchmark Network ================= Each LG has a Myricom 10GbE single port PCIe network interface. Each LG connects via a single 10GbE connection to ports on the Fujitsu XG2000. Processing Elements =================== Item No Qty Type Description Processing Function ----- --- ---- ----------- ------------------- 1 4 FPGA Altera Stratix III EP3SE260 Storage Interface, Filesystem 2 4 FPGA Altera Stratix III EP3SL340 Network Interface, NFS, Filesystem 3 2 CPU Intel E8400 3.0GHz, Dual Core Management 4 12 CPU N/A HW RAID Processing Element Notes ------------------------ Each Mercury server has 2 of each type of FPGA (4 total) used for the benchmark processing functions. Each RAID Controller shelf has dual controllers with 1 CPU each (2 total). There are 6 arrays used in this configuration. Memory ====== Size in Number of Nonvolatil Description GB Instances Total GB e ----------- --------- ------------ -------- ---------- Server Main Memory 12 2 24 V Server Filesystem and Storage Cache 14 2 28 V Server Battery-backed NVRAM 2 2 4 NV RAID Cache 1 6 6 V Grand Total Memory Gigabytes 62 Memory Notes ------------ Each Mercury server has 12GB of main memory that is used for the operating system and in support of the FPGA functions. 14GB of memory is dedicated to filesystem metadata and sector caches. A separate, integrated battery-backed NVRAM module on the filesystem board is used to provide stable storage for writes that have not yet been written to disk. The RAID Controllers were configured in write-thru mode (write cache disabled) with read-ahead disabled. Stable Storage ============== The Mercury server writes first to the battery based (72 hours) NVRAM internal to the Mercury. Data from NVRAM is then written to the disk drives arrays at the earliest opportunity, but always within a few seconds of arrival in NVRAM. In the active-active cluster configuration, the contents of the NVRAM are synchronously mirrored to ensure that in the event of a single node failover, any pending transactions can be completed by the remaining node. System Under Test Configuration Notes ===================================== The system under test consisted of a two 3U Mercury 50 servers, connected to storage via 2 16-port 4Gbps FC switches. The servers are configured in an active-active cluster, directly connected by a redundant pair of 10GbE connections to the cluster interconnect ports. The storage consisted of 6 arrays of 24 drives each, with a RAID controller shelf and disk expansion shelf in each array. All connectivity from server to storage was via a 4Gbps switched FC fabric. For the purposes of the test, each FC switch was zoned into 2 zones, for a total of 4 distinct zones used in the test. Each Mercury 50 server connected to each zone via 4 integrated 4Gbps FC ports (corresponding to 4 H-ports) built into the server. Each storage array was connected to 2 zones (corresponding to 2 H-ports) providing a fully redundant path from each server to every storage array. Expansion shelves were connected to the controllers via dual SAS interconnects. The System Management Unit (SMU) is part of the total system solution, but is used for management purposes only. It is not active during the test. Other System Notes ================== Test Environment Bill of Materials ================================== Item Model/ No Qty Vendor Name Description ----- --- ------ --------- ----------- 1 12 Unbranded N/A Unbranded 1U Solaris client with Tyan n6650W dual Opteron motherboard, 4GB RAM 2 1 Fujitsu XG2000 Fujitsu XG2000 20-port 10GbE Switch Load Generators =============== LG Type Name LG1 BOM Item # 1 Processor Name AMD Opteron 2218 Processor Speed 2.6 Ghz Number of Processors (chips) 2 Number of Cores/Chip 2 Memory Size 8 GB Operating System Solaris 10 Network Type 1 x Myricom (10G-PCIE-8A-R+E) 10Gbit Single Port PCIe Load Generator (LG) Configuration ================================= Benchmark Parameters -------------------- Network Attached Storage Type NFS V3 Number of Load Generators 12 Number of Processes per LG 64 Biod Max Read Setting 2 Biod Max Write Setting 2 Block Size AUTO Testbed Configuration --------------------- LG No LG Type Network Target Filesystems Notes ----- ------- ------- ------------------ ----- 1..12 LG1 1 /r/f1, /r/f2 N/A Load Generator Configuration Notes ---------------------------------- All clients were connected to one common namespace on the server cluster, connected to a single 10GbE network. Uniform Access Rule Compliance ============================== Each load generating client hosted 64 processes, all accessing a single namespace on the Mercury cluster through a common network connection. There are 2 physical target filesystems ( /r/f1 and /r/f2 ) that are presented as a single cluster namespace through virtual root ( /r ), accessible to all clients. Each load generator mounted to each filesystem target ( /r/f1 and /r/f2 ) and cycled through the two filesystems in sequence. The filesystems were uniformly striped across the available storage arrays such that all clients uniformly accessed all arrays. Other Notes =========== None BlueArc and SilconFS are registered trademarks, and BlueArc Mercury is a trademark of BlueArc Corporation in the United States and other countries. All other trademarks belong to their respective owners and should be treated as such. ================================================================================ Generated on Tue Nov 10 08:02:01 2009 by SPECsfs2008 ASCII Formatter Copyright (C) 1997-2008 Standard Performance Evaluation Corporation