

 1

SPEC Cloud IaaS 2018 Benchmark
Design Overview

1. Overview of SPEC Cloud® IaaS 2018 Benchmark .. 2

1.1 Trademark .. 2
1.2 Definitions ... 2
1.3 Design Principles ... 2
1.4 Requirements and Goals .. 2
1.5 Excluded Goals .. 3

2. SPEC Cloud IaaS 2018 Benchmark Architecture ... 4
2.1 Logical Architecture .. 4

2.1.1 Benchmark Harness .. 4
2.1.2 Life Cycle of An Application Instance ... 5

2.2 IaaS Cloud – The System Under Test ... 7
2.3 Workloads .. 7

2.3.1 I/O Intensive Workload: Yahoo! Cloud Serving Benchmark (YCSB) with Apache
Cassandra ... 7
2.3.2 Compute-intensive workload - K-Means with Apache Hadoop 10

2.4 Reference Platform .. 13
3. Running the Benchmark .. 14

3.1 Setup (Manual) .. 14
3.2 Baseline (Automated) .. 14
3.3 Scale-out (Automated) ... 15

3.3.1 Arrival Rate of AIs ... 16
3.4 White-box vs. black-box cloud considerations .. 16

4. Metrics and Computations ... 17
4.1 Metric: Replicated Application Instances .. 17

4.1.1 Discussion ... 17
4.2 Metric: Performance Score .. 18

4.2.1 Discussion ... 19
4.3 Metric: Relative Scalability ... 19

4.3.1 Discussion ... 20
4.4 Metric: Mean Instance Provisioning Time .. 21
4.5 AI Provisioning Success Metric .. 21
4.6 AI Run Success Metric .. 21
4.7 Scale-out Start time Metric .. 21
4.8 Scale-out End time Metric ... 22
4.9 SPEC Cloud IaaS 2018 Benchmark Total Instances Metric ... 22

5 Limitations of the benchmark ... 23
6 Full Disclosure Reports .. 23
Appendix 1: SPEC Cloud IaaS 2018 Benchmark Example FDR ... 24
Appendix 2: References ... 35

 2

1. Overview of SPEC Cloud® IaaS 2018 Benchmark
The SPEC Cloud® IaaS 2018 Benchmark is a software benchmark product developed by the
Standard Performance Evaluation Corporation (SPEC), a non-profit group of computer vendors,
system integrators, universities, research organizations, publishers, and consultants. It is
designed to evaluate a computer system's ability to act as an Infrastructure-as-a-Service (IaaS)
cloud.

This document describes the design of the IaaS benchmark, its design principles, goals, structure
and components, the selected workloads, and the reasons for the design choices.

1.1 Trademark
SPEC and the name SPEC Cloud are registered trademarks of the Standard Performance
Evaluation Corporation. Additional product and service names mentioned herein may be the
trademarks of their respective owners.

1.2 Definitions
The definitions for the names and terms used in the benchmark are available in the benchmark’s
glossary: https://dev-www.spec.org/cloud_iaas2018/docs/glossary.html.

1.3 Design Principles
The guiding principle that underlies all SPEC benchmarks is to measure the performance using
representative real-world workloads. SPEC Cloud IaaS 2018 Benchmark utilizes a subset of the
workloads that represent real-world use cases found on public, private, or hybrid IaaS clouds.
The benchmark utilizes two workloads, the Yahoo! Cloud Serving Benchmark (YCSB)
[Reference: YCSBWhitePaper] and the K-Means implementation from HiBench [References:
KMeansClustering and HiBenchIntro].

SPEC Cloud IaaS 2018 Benchmark workloads are managed by a benchmark harness, the Cloud
Rapid Experimentation and Analysis Tool [Reference: CBTOOL].
CBTOOL is responsible for correct test execution across different clouds. The harness
interoperates with the benchmark drivers. The harness creates and destroys instances,
instantiates application instances, collects various measurements and data points, and computes
various scores for each test.

The benchmark uses two execution phases, Baseline and Scale-out. In the baseline phase, peak
performance for each workload is determined in separate test runs. Data from the baseline phase
establishes parameters for the Scale-out phase. In the Scale-out phase, both workloads are run
concurrently and new workload instances are injected every few minutes to increase the load on
the cloud to determine performance and relative scalability metrics.

1.4 Requirements and Goals
The primary requirement and goal is to provide metrics that not only quantify the relative
performance and capacities of an IaaS cloud, but also how typical cloud application workloads
behave as the underlying cloud resources are stretched and may approach full capacity. The

 3

benchmark envisions its main audience as hardware and software vendors, cloud providers, and
cloud consumers. The cloud systems may be a private or a public cloud.
The main features of the benchmark are:

• Uses workloads consistent with popular social media applications using a NoSQL
database and big data analytics using Hadoop.

• Stresses the provisioning and run-time of a cloud with multiple multi-instance workloads,
subject to strict Quality of Service (QoS) metrics.

• No requirements are placed on the instance configuration. The tester is free to choose
CPU (virtual CPU or core pinning), memory, disk (ephemeral disk or block storage), and
network configuration for instances used to run the benchmark’s workloads.

• Limited requirements are placed on the internal architecture of the test-bed.
• A hypervisor or virtualization layer is not required.
• Supports optional multi-tenancy.

The cloud being tested must have the following attributes:

• Consist of three (3) or more physical servers connected by a network.
• Have the ability to import an instance image or store a snapshot of an instance as an

instance image, and provision one or more instances from that instance image.
• Have the ability to launch an instance without manual intervention.
• CBTOOL must be able to SSH into all instances over the network. If instances have a

private IP address, CBTOOL can use a jump box or equivalent to SSH into the instances.

1.5 Excluded Goals
Some metrics that are potentially relevant to cloud will not be explicitly measured in SPEC
Cloud IaaS 2018 Benchmark. These metrics include Durability, Isolation, Elasticity, Reliability,
Power, Price, and Density. The subjective nature of these metrics makes it difficult to quantify as
engineering metrics in the context of this benchmark.

The benchmark does not explicitly require the use of geographically isolated cloud configuration
so it does not preclude tests from using a geographically distributed configuration, as long as the
location information is included in the Full Disclosure Report.

The benchmark is designed to measure performance of workloads typically run on cloud. Micro-
benchmarks that measure only one aspect of IaaS cloud such as CPU, network, or memory are
not part of the SPEC Cloud IaaS 2018 Benchmark.

 4

2. SPEC Cloud IaaS 2018 Benchmark Architecture
The benchmark consists of several logical components. This section provides a high-level
architecture of how these components fit together and interact with each other.

2.1 Logical Architecture
The entire physical configuration needed for SPEC Cloud IaaS 2018 Benchmark can be
described using two groups of hosts. These machines may be physically co-located in the same
facility (data center/region) or company campus. The machine on the left side of Figure 1 is the
benchmark harness. The group of machines on the right side of Figure 1 represents the IaaS
Cloud system under test (SUT).

Figure 1 Logical architecture of SPEC Cloud IaaS 2018 Benchmark

2.1.1 Benchmark Harness
The harness is an infrastructure that automates the benchmarking process. It provides an
interface for scheduling and launching benchmark runs. It also offers extensive functionality for
viewing, comparing and charting results. Specifically, the harness:

• Starts and stops application instances and workload generators;
• Collects and aggregate the results;
• Determines if a run was successful; and
• Generates a full disclosure report

A Cloud benchmark has additional requirements not found in other SPEC benchmarks, such as
instantiating new instances on command and decommissioning instances at the conclusion of the
benchmark run. Usually, there are public or proprietary cloud management systems in use.
Therefore, the harness must be extensible to support the ability to add or modify the distributed
workloads or write custom modules that allow the benchmark to interface with the SUT’s
management system.

 5

SPEC Cloud IaaS 2018 Benchmark uses Cloud Rapid Experimentation and Analysis Tool
(CBTOOL), in this document. CBTOOL is an Apache 2.0 licensed cloud benchmark harness that
meets the properties of the benchmark harness described above. CBTOOL exposes an API that is
used by the baseline and scale-out drivers for executing the two phases of the benchmark.
Finally, the report generator is used to generate the report for the baseline and scale-out phases
of the benchmark.

CBTOOL provides adapters for creating or deleting instances on clouds such as Amazon EC2,
Digital Ocean public cloud, Google Compute Engine, IBM Softlayer, and OpenStack. Within
each cloud, the API versions can vary over time. It is the responsibility of the tester to write or
update an adapter for connecting CBTOOL to the cloud under test.

2.1.2 Life Cycle of An Application Instance
Figure 2 shows the life cycle of an application instance. Broadly, the life cycle of an application
instance can be classified into provisioning, data generation, and load phases. Data generation
and load phases constitute an application instance run (referred to as AI run). Once CBTOOL
receives a request to provision an application instance, it instructs the cloud under test to create
the instances. Once the instances have been provisioned, and the application running in these
instances is ready, the AI is considered to have been provisioned. This duration is indicated by
the “AI prov. time” in Figure 2.

As soon as CBTOOL detects that the application is ready, it invokes a workload-specific script to
generate the data set. The workload driver uses this data set during the run. The parameters of the
workload were chosen such that data set is generated within a reasonable amount of time (i.e.,
under five minutes). As such it is possible for the generated data to fit within an instance
memory; however, within each workload, certain data must be written to disk. Moreover, a
different data set is generated for each AI run and stored in appropriate workload database.

Once the required data set has been generated, the workload driver starts the load phase. Upon
completion of the load phase, the workload driver reports the collected metrics into CBTOOL.
Then, any data that was generated before or during the run is discarded. The time duration
between the start of data generation to the end of data deletion comprises an AI run.

 6

Figure 2 Life cycle of an application instance

In the baseline phase of the benchmark, the baseline driver creates an application instance,
generates the data set, and runs the load phase a minimum of five times. As soon as the baseline
driver receives the metrics from the workload driver, it terminates the application instance. It
then repeats the same procedure for at least five times. By default, a total of 25 (5x5) AI runs for
each workload are completed during the baseline phase.

In the scale-out phase of the benchmark, the scale-out driver instructs CBTOOL to create
application instances for each workload with an interval between creations based on a uniform
distribution between 5 and 10 minutes. The creation of each application instance results into a
burst of instance creation requests at the cloud. The creation of application instance for each
workload is independent. Once created, the application instances go through one or more AI runs
(a data generation and a load phase).

During each AI run, CBTOOL invokes the workload-centric data generation drivers to generate
the data set. The workload-centric data generation drivers generate the data according to
appropriate probability distributions. The data set is generated during each AI run to reduce the
caching that might result if the same data set is used across AI run or across multiple application
instances. During scale-out phase, application instances are not deleted. Once the scale-out
driver determines that a stopping condition for the benchmark has occurred, the driver instructs
CBTOOL to stop creating application instances. A stopping condition includes events such as
reaching a set maximum for number of AIs or when one or more QoS thresholds have been
breached. This marks the end of scale-out phase of the benchmark.

 7

Figure 3 Life cycle of an application instance - multiple runs

2.2 IaaS Cloud – The System Under Test
The “System Under Test” (SUT) consists of:

● The host system(s) (including hardware and software) required to supply the
“Infrastructure as a Service” that can support the multi-instance workload used by the
benchmark.

● All network components (hardware and software) that connect the external clients to the
cloud, and all network interfaces between host machines, which are part of the SUT.

● Network components between the workload generator instances/hosts and the SUT,
which are not basic TCP/IP switches, routers, bridges or MAU (media adapter units).
Some examples include: firewalls, round-robin DNS load balancers, load balancers, and
anti-abuse filters.

● All software required to build, deploy, and run the specific benchmark workload.

The SUT may offer infrastructure services for instances on bare metal servers, virtual
machines, or containers.

2.3 Workloads
SPEC has identified multiple workload classifications already used in current cloud computing
services. From this, SPEC has selected I/O and CPU intensive workloads for the benchmark.
Within the wide range of I/O and CPU intensive workloads, SPEC selected social media NoSQL
database transaction workload and K-Means clustering using map/reduce as representative of
popular distributed workloads within cloud computing. The details of these workloads are
described below.

2.3.1 I/O Intensive Workload: Yahoo! Cloud Serving Benchmark (YCSB) with Apache
Cassandra
Social network sites are one of the more popular uses for large cloud computing. Social network
sites contain many types of computing services, of which NoSQL database is a critical
component and is I/O intensive. Yahoo! Cloud Serving Benchmark (YCSB) available under
Apache 2.0 license simulates many types of database transactions, including a read dominated

 8

transaction mixture typical of most social media database activities. The SPEC Cloud IaaS 2018
Benchmark uses YCSB workload D (95% read, 5% insert) as the one that simulates simple social
network user activities.

For NoSQL database, SPEC Cloud IaaS 2018 Benchmark uses the Apache Cassandra database
as the underlying NoSQL database because during benchmark development, an Apache
Cassandra database proved to be more sensitive to I/O and CPU resource constraints. Apache
Cassandra is available under Apache 2.0 license.

Figure 4 shows the architecture of YCSB application instance in the SPEC Cloud IaaS 2018
Benchmark. The YCSB driver instance generates load on the Cassandra cluster. The Cassandra
cluster comprises six instances. Together, these seven instances comprise the YCSB application
instance for the benchmark. The choice of six instances for Cassandra represents a tradeoff
between a trivial cluster size (e.g., two) and large cluster sizes (e.g., twenty), and having more
than one workload generators to saturate the cluster, which will be required for large cluster
sizes.

Figure 4 YCSB / Cassandra application instance in SPEC Cloud IaaS 2018 Benchmark

Cassandra supports two types of nodes in its cluster configuration, namely, seeds and data nodes.
Seeds during startup work to discover the other seeds/data nodes that make up the cluster
[Reference: CassandraSeedsOne]. One design option was to use three seeds and three data
nodes. The data nodes take a non-deterministic time to join the cluster. Moreover, multiple data
nodes joining at the same time is potentially problematic. The Cassandra documentation at the
time of benchmark development, recommended a gap of two minutes between multiple

 9

Cassandra data nodes that join an existing cluster [Reference: CassandraAddDataNodes].
Therefore, YCSB application instance uses six seeds as the six Cassandra instances.

2.3.1.1 Workload driver
YCSB driver instance generates load on the Cassandra cluster. Several configuration paramters
for the YCSB driver instance can affect the load applied the Cassandra cluster. The
thread_count parameter controls throughput level. In general, a higher number of threads will
yield a higher throughput for Cassandra cluster until limits within the YCSB driver instance or
Cassandra cluster are reached. If YCSB driver instance reaches the limits, adding more threads
will not result in the YCSB driver instance sending more requests per second. If limits within the
Cassandra cluster are reached, adding more threads in YCSB driver instance will not result into
an increased throughput. Moreover, generating very high throughput using a very large number
of threads may be susceptible to larger performance degradation as load on the cloud increases.

Another parameter is the operation_count which controls the time spent generating the load level
enabled by the thread_count. After evaluating a number of options for setting these parameters,
a thread_count of 40 and an operation_count of 4 million were selected for the 2018 benchmark.
The goal was to allow improvements in I/O performance to be reflected by the benchmark and to
the keep the YCSB workloads AI run cycle time in balance with the Kmeans workload for the
“medium” flavor instances in current clouds such as those used in the reference platforms.

Table 1 shows the parameters used for YCSB driver. These parameters cannot be changed in any
phase of the benchmark. The choice of total records inserted in DB is a careful design decision.
During scale-out phase, the data is generated for each AI run, the total records inserted were kept
to 1,000,000. Given the default record length of 1KB, the data size is one GB. The effective data
size with three-way replication is at least three gigabytes across six Cassandra seeds. As such
this data is small enough to fit within the memory. However, 5% of the total operations are
writes, which result in disk I/O during load generation. Moreover, the data set generation before
an AI run also results in disk and network I/O.

The choice of request distribution governs which records become the most popular. The ‘latest’
distribution implies that the recently inserted records will become the most popular.

Table 1 YCSB configuration parameters for SPEC Cloud IaaS 2018 Benchmark

2.3.1.2 YCSB metrics
Description YCSB parameter YCSB parameter value

 10

Total records inserted in
DB

recordcount 1,000,000

Total operations during a
YCSB run

operationcount 4,000,000

Number of Threads used
by YCSB load generator

threadcount 40

Workload used workload com.yahoo.ycsb.workloads.CoreWorkload

Read all fields in the
records returned

readallfields true

Proportion of read
operations

readproportion 0.95

Proportion of update
operations

updateproportion 0

Proportion of scan
operations

scanproportion 0

Proportion of insert
operations

insertproportion 0.05

Request distribution requestdistribution Latest
Default data size of each
record

1KB 10 fields, 100 bytes each, plus key

Following metrics from YCSB are used for Performance Score and Relative Scalability
calculations:

• Throughput (ops/sec)
• 99th percentile of insert response time (ms)
• 99th percentile of read response time (ms)
• Average AI provisioning Time

2.3.2 Compute-intensive workload - K-Means with Apache Hadoop
The K-Means algorithm is a popular clustering algorithm used in machine learning. SPEC Cloud
IaaS 2018 Benchmark uses Intel HiBench K-Means implementation [Reference: HiBenchIntro].
K-Means is one of the nine Hadoop workloads that are part of the HiBench suite. HiBench was
selected as the benchmark suite as it provides multiple Hadoop workloads and has a uniform
interface for running these workloads. HiBench uses Apache Mahout [Reference: ApacheMahout]
for K-Means implementation. The HiBench K-Means workload was selected based on its range of
workload models, and built-in data generator to drive the load.
The workload comprises a Hadoop name node instance, which also runs the Intel HiBench
workload driver. The data is processed on five Hadoop data nodes. Together, these six instances
comprise the K-Means application instance in SPEC Cloud IaaS 2018 Benchmark. Figure 5 shows
the logical architecture of K-Means application instance in SPEC Cloud IaaS 2018 Benchmark.

 11

Figure 5 K-Means application instance

SPEC Cloud IaaS 2018 Benchmark uses Apache Hadoop (v2.7.1 or higher).

2.3.2.1 K-Means description
(The description in this section is copied verbatim from
https://mahout.apache.org/users/clustering/k-means-clustering.html)

K-Means is a simple but well-known algorithm for grouping objects and clustering. All objects
need to be represented as a set of numerical features. In addition, the user has to specify the
number of groups (referred to as k) or clusters.

Each object can be thought of as being represented by some feature vector in an n-dimensional
space, where n is the number of all features used to describe the objects in a cluster. The
algorithm then randomly chooses k points in that vector space, and these points serve as the
initial centers of the clusters. Afterwards, all objects are each assigned to the center they are
closest to. Usually the distance measure is chosen by the user and determined by the learning
task.

After that, for each cluster a new center is computed by averaging the feature vectors of all
objects assigned to it. The process of assigning objects and recomputing centers is repeated until
the process converges. The algorithm can be proven to converge after a finite number of
iterations.

 12

2.3.2.2 Workload driver
HiBench driver runs on the Hadoop namenode. It generates the dataset to be used by K-Means. It
uses uniform distribution to generate centers for K-Means and uses Gaussian distribution to
generate samples around these centers. Following attributes are used in data generation and for
K-Means clustering.

Table 2 HiBench configuration parameters for SPEC Cloud IaaS 2018 Benchmark

Parameter Value
NUM_OF_SAMPLES 1,000,000
SAMPLES_PER_INPUTFILE 500,000
NUM_CLUSTERS 5
DIMENSIONS 20
MAX_ITERATION 5
CONVERGENCE_DELTA (-cd
option)

0.5

CANOPY_CLUSTERING (-cl
option)

Used

The NUM_CLUSTER parameter indicates that the maximum number of clusters (or K) to be
found is set to five. The DIMENSIONS parameter indicates that the number of features in a
sample vector is set to twenty. The HiBench driver uses the EuclideanDistance to compute the
distance between the sample object and the chosen centroid.
To bound the time it takes to run K-Means, MAXIMUM_ITERATION of five is specified. In
theory, it implies that the algorithm can terminate before the CONVERGENCE_DELTA (cd)
value of 0.5 is reached. The CANOPY_CLUSTERING option indicates that input vector
clustering is done after computing canopies. Canopy clustering is used to compute the initial k
vectors for K-Means. No compression is enabled for Hadoop.

With the MAXIMUM_ITERATION set to 5, the convergence can take 1, 2, 3, 4, or 5 Hadoop
Iterations (HI); the probability distribution range runs from 1.56%, 19.88%, 23.39%, 21.44%,
and 33.72%, respectively. It should be noted that during baseline runs using the default settings,
it is very likely that a sample of 1 hadoop iteration may not occur. If any convergence iteration
count does not occur in baseline but does occur during the scale-out phase that sample will be
ignored. Since it is most likely to be the rare 1-iteration that gets dropped there should be
minimal impact on the relative scalability calculation. The tester can increase the baseline
iteration_count to get to more samples and increase the likelihood of having all 5 samples in their
baseline run if desired.

Another effect of the range of convergence iterations in any given AI run, is the associated
completion times are variable as well; for the reference platform the completion time ranges
from 76 for (HI=1) to 180 seconds (HI=5). The reference completion time can calculated using
the formula CT = 26 x HI + 50. For Kmeans, both the performance score and the relative
scalability calculations use the iteration specific completion times from the reference platform
and the baseline run respectively. This ensures that each Kmeans AI run measurement is scaled
fairly, so overweighting or underweight is avoided when a frequency of higher vs lower counts
occur.

 13

The size of the generated data set is approximately 415 MB. The total size of the data at the end
of a run is approximately 900 MB. With Hadoop’s three-way replication, the size on disk is
approximately 2.8 GB.

Using a medium instance size (2 vCPUs and 4GB memory), the KMeans completion and data
generations time have roughly the same duration as the YCSB completion time and data
generation per AI run for the reference platform.

The commands to run K-Means load driver are copied from the code for reference:

OPTION="$COMPRESS_OPT -i ${INPUT_SAMPLE} -c ${INPUT_CLUSTER} -o
${OUTPUT_HDFS} -x ${MAX_ITERATION} -ow -cl -cd 0.5 -dm
org.apache.mahout.common.distance.EuclideanDistanceMeasure -xm mapreduce"

${MAHOUT_HOME}/bin/mahout kmeans ${OPTION}

2.3.2.3 K-Means Metrics
Following metrics are reported:

• Completion time (seconds)
• Hadoop iteration count for each AI run
• Average AI provisioning time

2.4 Reference Platform
The benchmark uses results from a reference platform in the Performance Score calculation.
Several member companies participating in the benchmark development collected results from
baseline runs on private and public clouds without applying any performance tuning. These
results were composited to create the set of reference platform values for the 2018 release
consisting of a YCSB throughput (with corresponding latencies for reference) and a set of
KMeans completion times for each Hadoop iteration count (1-5). The reference platform values
are recorded in the osgcloud_rules.yaml and can not be modified without invalidating the test
results.

 14

3. Running the Benchmark
This section provides a high-level overview of the testing process. To setup and install the
benchmark please read the SPEC Cloud IaaS 2018 benchmark’s User Guide and Run and
Reporting Rules documents.

3.1 Setup (Manual)
The tester first needs to have access to a private or public cloud to test and to determine if there
is an existing CBTOOL adapter that may support that cloud. If an adapter is not available for
that cloud or the cloud API has changed since the adapter was submitted, then the adapter must
be written or modified. It is up to the tester to provide a functioning adapter in order to get the
SPEC Cloud IaaS 2018 benchmark running. Please see the User Guide for more details.

With a cloud available to test and a CBTOOL adapter for that cloud, the tester can proceed with
setting up the benchmark.

• The tester needs an environment on which to install the SPEC Cloud IaaS 2018
Benchmark software which includes the CBTOOL harness and SPEC Cloud scripts and
configuration files. For private clouds the benchmark harness must be installed on a
separate system from the cloud but it must have network access to instances on the cloud.
For public clouds, the harness may be run on a separate instance in the cloud.

• Instance images for the YCSB and KMeans workloads must be created. The application
software for each workload is included with the benchmark kit.

• With the benchmark installed on the harness and instance images for YCSB and KMeans
in the cloud, the tester can now try connecting to CBTOOL to the cloud. This can be
done manually by using CBTOOL’s API directly or by using the benchmark’s all_run.sh
script (--help) to test each workload by running a baseline (single iteration).

• With the ability to run baseline for both workloads, a full run of baseline and scale-out
phases for a few AIs can be attempted. If successful, the test will generate an html report
with the results of the test.

• Once a full run has been successful, the tester can proceed with additional testing and
tuning of the cloud. Testers of public cloud should make sure they monitor the costs
($$$) associated with the number of instances created and their running time and ensure
that the instances are deprovisioned at the end of all tests.

• Testers interested in publishing the results from compliant tests may submit these results
and supporting data by following the process in the Run and Reporting Rules document.

3.2 Baseline (Automated)
SPEC Cloud IaaS 2018 Benchmark baseline driver instructs the CBTOOL through its API to
create a single application instance for KMeans. CBTOOL then starts an AI run by instantiating
the data generation in the application instance and then starts the load generators. After set of 5
AI runs complete, the baseline driver collects the supporting evidence and then the AI is
deprovisioned. This is process is repeated until 5 KMeans AIs have been created and destroyed.

 15

The same process is followed for the YCSB workload.

If there are no errors in the five runs of either the KMeans or YCSB AIs as reported by
CBTOOL and the results meet the bounds defined for Quality-of-Service thresholds, the baseline
result is considered valid.

These settings and measurements are the baseline configurations and measurements and must be
used by the scale-out phase that follows.

3.3 Scale-out (Automated)
SPEC Cloud IaaS 2018 Benchmark scale-out driver instructs the CBTOOL via its API to connect
to the cloud and repeat the following cycle until one or more stopping conditions exist.

1. Start one application instance for the YCSB workload randomly between five and 10

minutes and start one application instance for the KMeans workload randomly between
five and 10 minutes (Note: the initial workload AI starts within a few seconds).

2. Asynchronously, wait until each application instance is ready to accept work, and repeat
the following sequence (an AI run).

a. Start the data generation for each application instance
b. Start the configured workload driver and wait until it completes
c. Record results and verify that are within QoS thresholds and increment associated

counters.
d. Destroy any generated data, and repeat step a-c.

3. On every new instance creation or when results for an AI run are received:
a. Check for application instance related stopping conditions.
b. If within acceptable conditions, go to Step 2.
c. If outside acceptable conditions or maximum AIs as set by the tester, stop the

execution of the scale-out phase and collect supporting evidence.

SPEC Cloud IaaS 2018 Benchmark scale-out driver uses CBTOOL to detect the following
stopping conditions. The details for stopping conditions are in the Run and Reporting Rules
document:

o 20% or more of the AIs fail to provision
o 10% or more of the AIs have any errors reported in any of the AI runs. This

includes AIs that fail to report metrics after 4 x the completion time of baseline
phase.

o 50% of the AIs or more have QoS condition violated across any run
o Maximum number of AIs as set by the tester is reached.
o Reported AIs as set by the tester is reached.

 16

3.3.1 Arrival Rate of AIs
The arrival rate of AIs for each workload is uniformly distributed between 5 and 10 minutes
throughout the benchmark run. Each AI results into a burst of instance creation requests; seven
instance creation requests for YCSB and six instance creation requests for K-Means,
respectively.

3.4 White-box vs. black-box cloud considerations
Black-box clouds (public clouds) are typically multi-tenant. Multi-tenancy implies that one or
most tenants (Cloud consumers) share the underlying cloud infrastructure such as compute,
network, and storage with each other. In white-box clouds, both hardware and software are under
the control of the tester. White-box cloud can be run as a single-tenant or multi-tenant. SPEC
Cloud IaaS 2018 Benchmark does not place any limitation on how many tenants are defined for
the cloud. It is up to the tester to configure the number of tenants. The metrics are aggregated
across all tenants in the final score.

Blackbox (public) cloud variations may have performance variations due to multi-tenancy, use of
different hardware, or time of day [Reference: EC2PerfVariations]. It is important to take criteria
such as time of day and geographies in to consideration when evaluating cloud performance
metrics. The benchmark can be run across multiple times of day to measure variation in
performance of blackbox clouds.

 17

4. Metrics and Computations

The SPEC Cloud IaaS 2018 Benchmark reports four primary metrics namely,

• Replicated Application Instances
• Performance Score
• Relative Scalability
• Mean Instance Provisioning Time

These metrics are
Secondary metrics reported include:

• AI Provisioning Success
• AI Run Success
• Scale-out Start Time
• Scale-out End Time
• Total Instances

The workload specific metrics and measurements are reported in the summary and detailed
sections of the report. These metrics are defined below. Example calculations are provided using
the data from a test using the CBtool simulator mode, so values are not representative of any real
cloud. The full disclosure report for the example test is included in Appendix 1 for reference.

4.1 Metric: Replicated Application Instances

The Replicated Application Instances metric reports the total number of valid AIs that have
completed at least one application iteration at the point the test ends. The total copies reported is
the sum of the Valid AIs for each workload (KMeans and YCSB) where the number of Valid AIs
for either workload cannot exceed 60% of the total. The other primary metrics are calculated based
on conditions when this number of valid AIs is achieved so are subordinate to this metric. The
unit of measure is copies since the benchmark scales out by adding new copies of AIs to increase
the load on the cloud. The formula used to calculate the metric:

Replicated Application Instances = (YCSB_Valid_AIs + KMeans_Valid_AIs) copies

= (4 + 4) = 8 copies

4.1.1 Discussion

A tester may set the limit on the maximum AIs that will be run in the cloud environment (SUT)
which limits the Replicated Application Instances metric to no more than the limit set. If this
limit is set to a small value, the Performance Score may be small while the Relative Scalability
metric may be high. Average instance provisioning time may not be impacted.

 18

In general, a cloud with higher Performance Score and Relative Scalability along with, lower
provisioning times and fewer errors is better than a cloud with low Performance Score and
Relative Scalability metric and higher provisioning times or errors for the same number of
Replicated Application Instances. Tests with different Replicated Application Instances can be
compared using the other primary metrics to focus on the aspects that are of most interest to the
reader (e.g., most work done, most consistency across AIs, fastest provisioning).

4.2 Metric: Performance Score

The Performance Score is an aggregate of the workload scores for all valid AIs represents the total
work done at the reported number of Replicated Application Instances. It is the sum of the KMeans
and YCSB workload performance scores normalized using the reference platform. The reference
platform values used are a composite of baseline metrics from several different white-box and
black-box clouds. Since the Performance Score is normalized, it is a unit-less metric.

The benchmark’s overall Performance Score is the sum of the individual workload performance
scores. The formula used to calculate the metric:

Performance_Score = Sum(YCSB_PerfScore,KMeans_PerfScore)

= (2.52 + 3.76) = 6.3 copies

YCSB_PerfScore =
Sum(YCSB_Avg_Throughput[AI=1..YCSB_Valid_AIs])/YCSB_Ref_Throughput
where YCSB_Ref_Throughput= 33448.21

= (20220.5 + 20360.8 + 21809.7 + 21737.4)/ 33448.21 = 2.52

KMeans_PerfScore =
Sum(Normalized_KMeans_Avg_ComplTime[AI=1..KMeans_Valid_AIs])
where Normalized_KMeans_Avg_ComplTime[AI]=
Average(KMeans_Ref_ComplTime[HI]/KMeans_ComplTime[AI][HI])
and KMeans_Ref_ComplTime[HI=1..5]={76,102,128,154,180}

Sum(
Normalized_KMeans_Avg_ComplTime[1] = Average(154/133, 128/130, 180/130)
Normalized_KMeans_Avg_ComplTime[2] = Average(154/186, 180/177, 128/145)
Normalized_KMeans_Avg_ComplTime[3] = Average(180/138, 128/181)
Normalized_KMeans_Avg_ComplTime[4] = Average(102/147)) = 3.76

 19

4.2.1 Discussion
The Performance Score formula captures the work done by a cloud. If a cloud does more work
than the other cloud while meeting QoS thresholds, then it would produce a higher performance
score than the other cloud.

SPEC Cloud IaaS 2018 Benchmark uses YCSB and K-Means workloads. The metrics used from
these workloads are throughput for YCSB; and completion time for K-Means. In general, higher
throughput is preferred and lower completion time is preferred. Since the metrics of two
workloads have different units (operations per second for throughput, and seconds for
completion time), these metrics cannot directly be combined in a single performance score. To
produce a workload independent performance metric the raw throughput, and completion time
metrics must be normalized using a reference cloud. Since it is difficult to come up with one
definition of a reference cloud, the participating companies in the design of SPEC Cloud IaaS
2018 Benchmark ran baseline phase for YCSB and K-Means workloads in their clouds without
applying any tunings and reported the results. The baseline results reported by the participating
companies are then averaged to compute the reference platform throughput and completion time
metrics. The throughput and completion results for a cloud are then normalized with the
reference platform throughput and completion time results to compute a workload agnostic
performance score.

The Performance Score formula may become dominated by one workload. This can happen due
to two reasons. One, the number of application instances for one workload is higher than the
other workload. The number of application instances for one workload may be higher, because
each work runs independently. SPEC Cloud IaaS 2018 Benchmark puts a lower bound on the
percentage of AIs for a workload used for metric computation, that is, the percentage of AIs from
a workload must be greater than or equal to 40%. The other reason is that depending on the
underlying cloud configuration (hardware and software), one workload may perform much better
(e.g., higher throughout for YCSB, lower completion time for K-Means) than the reference
platform. As a result, the performance score may be skewed towards one workload. This allows
the benchmark to reflect benefits of improved cloud hardware and software over time.

4.3 Metric: Relative Scalability

Relative Scalability measures whether the work performed by application instances scales linearly
in a cloud. When multiple AIs run concurrently, each AI should offer the same level of
performance as that measured for an AI running similar work during the baseline phase when the
tester introduces no other load. Relative Scalability is expressed as a percentage (out of 100).

A rough guideline for interpreting Relative Scalability results is shown below:
• Fair: 50-70%
• Good: 70%-80%
• Excellent: 80-100%

 20

The aggregate Relative Scalability metric is an average of Relative Scalability metrics for the
two workloads. It is expressed as a percentage out of one hundred. The higher the result is, the
better. The formula used to calculate the metric:

Relative_Scalability = Average(YCSB_RelScalability, KMeans_RelScalability)

= Average(96.19, 95.50) = 95.8%

YCSB_RelScalability =
((.25 * Min(1,YCSB_Base_AI_ProvTime/YCSB_Avg_AI_ProvTime)) +
(.375 * Min(1,YCSB_Avg_Throughput/YCSB_Base_Throughput)) +
(.1875 * Min(1,YCSB_Base_99ReadLatency/YCSB_Avg_99ReadLatency)) +
(.1875 * Min(1,YCSB_Base_99InsertLatency/YCSB_Avg_99InsertLatency))
) * 100 =

((.25 * Min(1, 23.2/18.2)) +
(.375 * Min(1, 21032.1/21195.5)) +
(.375 * Min(1, 11.968/13.532)) +
(.375 * Min(1, 5.755/6.204))
) * 100 = 96.19

KMeans_RelScalability =
(.25 * Min(1,KMeans_Base_AI_ProvTime/KMeans_Avg_AI_ProvTime) +
 .75 * Average(
 Min(1,KMeans_Base_ComplTime[HI=1]/KMeans_Avg_ComplTime[HI=1]), Min(1,KMeans_Base_ComplTime[HI=2]/KMeans_Avg_ComplTime[HI=2]),
 Min(1,KMeans_Base_ComplTime[HI=3]/KMeans_Avg_ComplTime[HI=3]),
 Min(1,KMeans_Base_ComplTime[HI=4]/KMeans_Avg_ComplTime[HI=4]),
 Min(1,KMeans_Base_ComplTime[HI=5]/KMeans_Avg_ComplTime[HI=5]))
) * 100
{Where Min term is dropped if any KMeans_*_ComplTime[HI=n] is empty}

= (.25 * Min(1, 21.0/15.8) +
 .75 * Average(
 Min(1, 141/147)
 Min(1, 159/152)
 Min(1, 127/159.5)
 Min(1, 169/150)) * 100 = (.25 * 1 + .75 * .94) = 95.5%

4.3.1 Discussion

YCSB and K-Means application instances are configured to perform a set amount of work in
SPEC Cloud IaaS 2018 Benchmark based on the parameter settings in the osgcloud_rule.yaml.
As load on a cloud increases by adding more application instances, the workload specific metrics
may be affected. In the case of YCSB AIs, the throughput across AI runs may decrease or the
read and insert latencies may increase. For KMeans AIs the completion time of K-Means may

 21

increase. The time to provision a new application instance may increase relative to the metrics
computed during the baseline phase.

The Relative Scalability metric for SPEC Cloud IaaS 2018 Benchmark measures the changes in
throughput or response time or completion or provisioning time relative to baseline metrics for
each application instance. In a perfectly scalable cloud, each AI during the scale-out phase
would have the same amount of compute, storage, and network resources available and would
perform at the same levels measured during the baseline phase. Since the degradation in this
perfect cloud would be zero, it would report a Relative Scalability of 100%.

A new data set is generated within each AI run so that any caching affects due to same data set
across AIs are minimized. The amount of work to be performed by an AI within every AI run is
statistically similar but not exactly similar. To counter the effects of statistically similar data sets,
the baseline results are average over a minimum of 25 runs. Similarly, throughput, completion
time, and insert/read response time are averaged over all AI runs for all AIs. This averaging of
results will reduce the degree of variability that arises due to dissimilarity in statistically similar
data sets.

4.4 Metric: Mean Instance Provisioning Time

The Mean Instance Provisioning Time represents an average of provisioning time of all instances
in all valid application instances. Since raw instance provisioning time has been a key metric
reported in the literature and is easy to compare, it is reported as a separate metric. Each instance
provisioning time measurement is the time from the initial provisioning request until a
connection to port 22 (ssh) can be made by the harness and is tracked by the harness.

The average instance provision time is also subsumed under the AI provisioning time for each
valid AI. The AI provisioning time includes the time to start the distributed application once the
deployment of its individual instances has completed.

4.5 AI Provisioning Success Metric
This metric indicates the percentage of AIs that were successfully provisioned.

4.6 AI Run Success Metric
This metric indicates the percentage of AIs that had all successful runs.

4.7 Scale-out Start time Metric
This metric indicates the time at which the Scale-out phase of the benchmark was started by the
harness.

 22

4.8 Scale-out End time Metric
This metric indicates the time at which the Scale-out phase of the benchmark was stopped by the
harness.

4.9 SPEC Cloud IaaS 2018 Benchmark Total Instances Metric
This metric indicates the total instances provisioned during the benchmark that belonged to
application instances with one or more runs.

 23

5 Limitations of the benchmark

SPEC Cloud IaaS 2018 Benchmark has the following limitations.

1. SPEC Cloud IaaS 2018 Benchmark is a benchmark for infrastructure-as-a-service clouds.
It does not measure the performance of platform-as-a-service clouds or software-as-a-
service clouds.

2. The benchmark does not explicitly measure CPU, memory, network or storage
performance of an instance. The performance of these components is indirectly measured
through YCSB and K-Means workloads that utilize Apache Cassandra and Apache
Hadoop, respectively. A tester is free to choose instance configuration.

3. The arrival time of application instances is uniformly distributed between five and 10
minutes. Within a single AI, a burst of seven or six instances arrives for YCSB and K-
Means workload, respectively. The scale-out driver does not adjust the arrival time of AIs
during the benchmark run. One reason for not changing the arrival time of AIs is that a
cloud may rate limit the number of instances that can be created within a unit time.

4. The size of the data set generated for YCSB and K-Means workloads may fit within the
memory of the instances. Since each application instance of YCSB or K-Means generates
a new data set from probability distributions, any caching across AIs due to the use of
same data set is minimized. Nevertheless, data caching within the memory of an instance
of AI can occur.

5. The work performed by each run across different application instances of the same
workload is statistically similar but not exactly similar. This was a deliberate design
decision to minimize any performance enhancement, which may result from performing
an exactly similar work across application instances. Variable work for different
workloads is not part of the SPEC Cloud IaaS 2018 Benchmark.

6. Client-server workloads (REST HTTP) (e.g., DayTrader or SPEC Web benchmark)
require workload generators that are outside of the cloud and are not represented in this
benchmark release.

7. SPEC Cloud IaaS 2018 Benchmark supports one or more tenants and does not require the
use of multiple tenants. The number of tenants used is left to the tester since a cloud may
solely focus on scalability and not multi-tenancy.

6 Full Disclosure Reports
SPEC Cloud IaaS 2018 Benchmark will generate the data set used to create the Full Disclosure
Report (FDR) for each run. Part of the FDR will report statistics from the collected data set and
the computed scores. The FDR will also provide enough detailed information on the SUT
configuration to qualify as a 'Bill of Materials' (BOM). The intent of the BOM is to enable a
reviewer to confirm that the tested configuration satisfies the run rule requirements and to
document the components used with enough detail to enable a customer to reproduce the tested
configuration and obtain pricing information from the supplying vendors for each component of
the SUT.

 24

Appendix 1: SPEC Cloud IaaS 2018 Benchmark Example FDR

The following full disclosure report, generated using the benchmark’s simulation mode, is for
illustration only and is not representative of any specific cloud environment. The example
metric calculations included in this document are based on the values taken from this simulated
test run unless otherwise noted.

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

Appendix 2: References

Keyword Bibliography Information

CloudWhitePaper SPEC OSG Cloud Working Group whitepaper
https://www.spec.org/osgcloud/docs/osgcloudwgreport20120410.pdf

CBTOOL Cloud Rapid Experimentation and Analysis Tool (CBTOOL)
https://github.com/ibmcb/CBTOOL

 Dumitras, T., & Shou, D. (2011). Toward a Standard Benchmark for
Computer Security Research. Carnegie Mellon University
https://www.umiacs.umd.edu/~tdumitra/papers/BADGERS-
2011.pdf

NISTPub145 Mell, P., & Grance, T.; NIST Definition of Cloud Computing,
Publication No. 145, 2011
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication80
0-145.pdf

ElasticityICAC Herbst, N., Kounev, S., Reussner, R. Elasticity in Cloud Computing:
What it is, and What it is Not. In Proceedings of the 10th
International Conference on Autonomic Computing (ICAC 2013),
San Jose, CA, June 24-28
https://sdqweb.ipd.kit.edu/publications/pdfs/HeKoRe2013-ICAC-
Elasticity.pdf

HiBenchIntro Hadoop Benchmark Suite (HiBench) documentation
https://github.com/intel-hadoop/hibench/#overview

KMeansClustering http://en.wikipedia.org/wiki/K-means_clustering

ApacheCassandra http://cassandra.apache.org/

ApacheHadoop https://hadoop.apache.org/

ApacheMahout http://mahout.apache.org/

YCSBWhitePaper Yahoo! Cloud Serving Benchmark (YCSB) Results Report.
Cooper, Brian; version 4, 2010
http://www.brianfrankcooper.net/home/publications/ycsb.pdf

CassandraSeeds http://wiki.apache.org/cassandra/FAQ#seed

 36

CassandraAddDataNodes http://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_
add_node_to_cluster_t.html

EC2PerfVariations http://www.infoworld.com/article/2613784/cloud-
computing/benchmarking-amazon-ec2--the-wacky-world-of-cloud-
performance.html

Copyright © 1998-2018 Standard Performance Evaluation Corporation (SPEC). All rights
reserved.

Revision Date: Jan. 25, 2018

