
 1

 SPEC Cloud™ IaaS 2016 Benchmark
Design Overview

1. Overview of SPEC Cloud™ IaaS 2016 Benchmark ... 2	

1.1 Trademark .. 3	
1.2 Definitions ... 3	
1.3 Design Principles .. 7	
1.4 Requirements and Goals .. 7	
1.5 Excluded Goals ... 8	

2. Benchmark Details ... 8	
2.1 Logical Architecture .. 8	

 .. 9	
2.1.1 Benchmark Harness ... 9	
2.1.2 Life Cycle of An Application Instance ... 10	

2.2 SUT (IaaS Cloud) ... 12	
2.3 Workloads ... 12	

2.3.1 I/O Intensive Workload: Yahoo! Cloud Serving Benchmark (YCSB) with
Apache Cassandra .. 13	
2.3.2 Compute-intensive workload - K-Means with Apache Hadoop 15	

2.4 Reference Platform ... 18	

 2

3. Running the Benchmark ... 18	
3.1 Setup (Manual) ... 19	
3.2 Baseline (Automated) ... 19	
3.3 Elasticity + Scalability (Automated) ... 19	

3.3.1 Arrival Rate of AIs .. 20	
3.4 White-box vs. black-box cloud considerations .. 20	

4. Metrics and Computations .. 21	
4.1 SPEC Cloud IaaS 2016 Benchmark Elasticity Metric .. 21	

4.1.1 Discussion .. 21	
4.2 SPEC Cloud IaaS 2016 Benchmark Scalability Metric .. 23	

4.2.1 Discussion .. 23	
4.3 SPEC Cloud IaaS 2016 Benchmark Mean Instance Provisioning Time Metric ... 24	
4.4 SPEC Cloud IaaS 2016 Benchmark AI Provisioning Success Metric 24	
4.5 SPEC Cloud IaaS 2016 Benchmark AI Run Success Metric 25	
4.6 SPEC Cloud IaaS 2016 Benchmark Elasticity Start time Metric 25	
4.7 SPEC Cloud IaaS 2016 Benchmark Elasticity End time Metric 25	
4.8 SPEC Cloud IaaS 2016 Benchmark Total Instances Metric 25	
4.9 Metric Reporting ... 25	

4.9.1 Discussion on the Metrics Reported in the Final Score 26	
4.9.2 Setting the Limit for Maximum AIs ... 26	

4.10 Benchmark Calculation Example ... 27	
5 Limitations of the benchmark .. 30	
6 Full Disclosure Reports ... 31	
Appendix 1: SPEC Cloud IaaS 2016 Benchmark Reference Platform Metrics 33	

A1.1 YCSB Reference Metrics ... 33	
A1.2 K-Means Reference Metrics ... 35	

Appendix 2: References ... 36	

1.	Overview	of	SPEC	Cloud™	IaaS	2016	Benchmark	
The SPEC Cloud™ IaaS 2016 Benchmark is a software benchmark product developed
by the Standard Performance Evaluation Corporation (SPEC), a non-profit group of
computer vendors, system integrators, universities, research organizations, publishers,

 3

and consultants. It is designed to evaluate a computer system's ability to act as an
Infrastructure-as-a-Service (IaaS) cloud.
This document describes the design of the IaaS benchmark, its design principles, goals,
structure and components, the selected workloads, and the reasons for the design
choices.

1.1	Trademark	
SPEC and the name SPEC Cloud are trademarks of the Standard Performance
Evaluation Corporation. Additional product and service names mentioned herein may be
the trademarks of their respective owners.

1.2	Definitions	
The names and terms used in this benchmark were established in the original SPEC
OSG Cloud White Paper, published in 2012. It uses most of the definitions established
in the US Government NIST white paper on cloud computing [Reference: NISTPub145].

Cloud Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction. [Reference: NISTPub145]

Cloud Provider An organization that provides cloud services to customers who
pay for only the computing time and services actually used.
[Reference: NISTPub145]

Cloud Consumer A person or organization that is a customer of a cloud; note that a
cloud customer may itself be a cloud and that clouds may offer
services to one another. [Reference: NISTPub145]

Infrastructure as
a Service (IaaS)

The Cloud Provider gives the Cloud-Consumer the capability to
the provision processing, storage, network, and basic computing
resources. They can also deploy and run arbitrary operating
systems. The Cloud-Consumer does not manage or control the
underlying physical cloud infrastructure, but has control over the
operating system, assigned storage, deployed applications, and
limited control of select networking components (e.g., host
firewalls). [Reference: CloudWhitePaper]

Whitebox Cloud The SUT's exact engineering specifications including all
hardware and software are known and under the control of the
tester. This will typically be the case for private clouds.

 4

[Reference: CloudWhitePaper]

Blackbox Cloud A cloud-provider provides a general specification of the SUT,
usually in terms of how the cloud consumer may be billed. The
exact hardware details corresponding to these compute units
may not be known. This will typically be the case if the entity
benchmarking the cloud is different from a cloud provider (e.g.,
for public clouds). [Reference: CloudWhitePaper]	

Hybrid Cloud The cloud infrastructure is a composition of two or more distinct
cloud infrastructures (private, community, or public) that remain
unique entities, but are bound together by standardized or
proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between
clouds). [Reference: NISTPub145]

Private Cloud The cloud infrastructure is provisioned for exclusive use by a
single organization comprising single or multiple consumers (e.g.,
business units). It may be owned, managed, and operated by the
organization, a third party, or some combination of them, and it
may exist on or off premises. [Reference: NISTPub145]

Public Cloud The cloud infrastructure is provisioned for open use by the
general public. It may be owned, managed, and operated by a
business, academic, or government organization, or some
combination of them. It exists on the premises of the cloud
provider. [Reference: NISTPub145]

The SPEC Cloud IaaS 2016 Benchmark uses these terms through out its documents.

Instance An instance is an abstracted execution environment, which
presents an operating system (either discrete or virtualized). The
abstracted execution environment presents the appearance of a
dedicated computer with CPU, memory and I/O resources
available to the operating system. In SPEC Cloud, an instance
consists of a single OS and the application software stack that
supports a single SPEC Cloud component workload. There are
several methods of implementing an instance, including physical
machines, virtual machines, or containers.

An instance is created or destroyed using an API provided by an
IaaS cloud.

Instance image An image on the disk from which an instance is provisioned.

 5

Common formats for instance image include QCOW2 (Qemu
copy on write 2), RAW, AMI (Amazon machine image), or a
Softlayer Flex image.

Physical machine A typical physical machine has at least 4 GB of memory, 40 GB
of local or remote (network attached, block storage) disk space,
1 Gb/s of network connectivity, and processing power equivalent
to Intel Xeon processors. The physical machine can have its own
physical packaging or be installed as a blade in a blade chassis.

Application
Instance

A group of instances created to run a single workload together.
An application instance comprises a workload driver instance
and set of instances, which are stressed by the workload driver.
SPEC Cloud IaaS 2016 Benchmark uses multiple application
instances during specific phases to determine elasticity and
scaling.

AI_run AI_run indicates the creation of dataset, running of load
generator, and collection of results. A valid application instance
created during elasticity + scalability phase will have one or more
runs.

Provisioning
Time

The measured time needed to bring up a new instance, or add
more resources (like CPU or storage) to an existing instance.
[Reference: CloudWhitePaper]
Within this document, this will be divided into two measurements:
Instance: The time from request to create a new instance until

that instance responds to a netcat probe on port 22.
Application instance: The time from request to create a

new instance until the associated cluster reports
readiness to accept client requests. YCSB (Yahoo!
Cloud Serving Benchmark) is ready when all nodes
in the underlying database are part of the
Cassandra cluster. K-Means is ready when the all
nodes in HDFS are ready and part of the HDFS
cluster.

SUT One or more cloud services under test. This includes all
hardware, network, base software and management systems
used for the cloud service. [Reference: CloudWhitePaper]

 6

Response Time The time between when the work item request is issued until the
corresponding completion condition. This definition is identical to
the YCSB “Latency” metric.

Variability The difference in workload and benchmark metrics between
different runs of the benchmark. Typically, variability arises due
to factors such as multi-tenancy and time of day execution, and
may be more pronounced on public clouds.

Quality of Service
(QoS)

The minimum percent (e.g., 95%) of collected values that
complete within a predefined threshold in each measurement
category. The Run and Reporting Rules document contains
specific QoS limitations for each workload and benchmark.

CBTOOL An open-source benchmark harness that instantiates and
destroys application instances and collects metrics [Reference:
Cbtool]

Cloud API An application programming interface exposed by a cloud to
perform certain operations such as instantiate or delete
resources (e.g., instance, storage, network).

Cloud Adapter Cloud adapter is a software component invoked by CBTOOL to
perform cloud-specific operations for running the benchmark.
Examples of these operations invoked by CBTOOL include
creating or deleting instances or storage, listing instances,
images, and networks. These operations are typically exposed
by a cloud API, and can vary from one cloud to the other.

Benchmark
phases

Benchmark has two phases, namely baseline and elasticity +
scalability.

Baseline phase In baseline, peak performance for each workload is determined
in five separate test runs. During each workload run, instances
are provisioned, data set is generated, load generator is started,
results are accumulated, and the instances are destroyed. The
workloads are run in a sequential fashion. Data from the baseline
phase is used to establish parameters for the Elasticity +
Scalability phase.

Baseline driver Baseline driver runs the baseline phase of the benchmark.

Elasticity + In the Elasticity + Scalability phase, new application instances

 7

scalability phase are created, and they run the workloads concurrently to
determine the elasticity and scalability metrics. The benchmark
reports are generated at the end of elasticity + scalability phase.

Elasticity driver Elasticity driver runs the elasticity + scalability phase of the
benchmark.

1.3	Design	Principles	
The guiding principle that underlies all SPEC benchmarks is to measure the
performance using representative real-world workloads. SPEC Cloud IaaS 2016
Benchmark utilizes a subset of the workloads that represent real-world use cases found
on public, private, or hybrid an IaaS clouds. For this release, the benchmark comprises
two workloads, the Yahoo! Cloud Serving Benchmark (YCSB) [Reference:
YCSBWhitePaper] and the K-Means implementation from HiBench [References:
KMeansClustering and HiBenchIntro].
SPEC Cloud IaaS 2016 Benchmark workloads are managed by a benchmark harness,
Cloud Bench a.k.a cbtool [Reference: cbtool] that is responsible for correct test
execution across different clouds. The harness interoperates with the benchmark
drivers. The harness creates and destroys instances, instantiates application instances,
collects various measurements and data points, and computes various scores for each
submission.
The architecture of the benchmark comprises two execution phases, Baseline and Elasticity +
Scalability. In the baseline phase, peak performance for each workload is determined in
separate test runs. Data from the baseline phase is used to establish parameters for the
Elasticity + Scalability phase. In the Elasticity + Scalability phase, both workloads are run
concurrently to determine elasticity and scalability metrics.

1.4	Requirements	and	Goals	
The primary requirement and goal is to provide metrics that not only quantify the relative
performance and capacities of an IaaS cloud, but also how typical cloud application
workloads behave as the underlying cloud resources are stretched and may approach
full capacity. The benchmark envisions its main audience as hardware and software
vendors, cloud providers, and cloud consumers. The cloud systems may be a private or
a public cloud.
The main features of the benchmark are:

• Limited requirements are placed on the internal architecture of the test-bed.

• A hypervisor or virtualization layer is not required.

• No requirements are placed on the instance configuration. A cloud provider is
free to choose CPU (virtual CPU or core pinning), memory, disk (ephemeral disk
or block storage), and network configuration for VMs.

 8

• Uses workloads consistent with popular social media applications using a NoSQL
database and big data analytics using Hadoop.

• Stresses the provisioning and run-time of a cloud with multiple multi-instance
workloads, subject to strict Quality of Service (QoS) metrics.

• Supports easy addition of future workloads.

• Supports optional multi-tenancy.

The cloud SUT must have the following attributes:

• Consist of three (3) or more physical servers connected by a network.

• Have the ability to import an instance image or store a snapshot of an instance
as an instance image, and provision one or more instances from that instance
image.

• Have the ability to launch an instance without manual intervention.

• Cbtool must be able to SSH into all instances over the network. If instances
have a private IP address, cbtool can use a jump box or equivalent to SSH into
the instances.

1.5	Excluded	Goals	
Some metrics that are potentially relevant to cloud will not be explicitly measured in
SPEC Cloud IaaS 2016 Benchmark. These metrics include Durability, Isolation,
Reliability, Power, Price, and Density. The subjective nature of these metrics makes it
difficult to quantify as engineering metrics in the context of this benchmark.
This version also does not include benchmark phases that explicitly use geographically
isolated cloud configurations. However, the benchmark does not preclude a submission
using a geographically distributed configuration, as long as the location information is
included in the Full Disclosure Report.
The benchmark is designed to measure performance of workloads typically run on
cloud. Micro-benchmarks that measure only one aspect of IaaS cloud such as CPU,
network, or memory are not part of SPEC Cloud IaaS 2016 Benchmark.

2.	Benchmark	Details	
The benchmark consists of several logical components. This section provides a high-
level architecture of how these components fit together and interact with each other.

2.1	Logical	Architecture	
The entire physical configuration needed for SPEC Cloud IaaS 2016 Benchmark is
divided into two groups of hosts. These machines may be physically co-located in the
same facility (data center) or company campus. The group of machines on the right side

 9

of Figure 1 comprises the system under test (SUT). The machine on the left side of
Figure 1 comprises the benchmark harness.

	

Figure 1 Logical architecture of SPEC Cloud IaaS 2016 Benchmark

2.1.1	Benchmark	Harness	
The harness is an infrastructure that automates the benchmarking process. It provides
an interface for scheduling and launching benchmark runs. It also offers extensive
functionality for viewing, comparing and charting results. Specifically, the harness:

• Starts and stops application instances and workload generators;

• Collects and aggregate the results;

• Determines if a run was successful; and

• Generates a full disclosure report
A Cloud benchmark has additional requirements not found in other SPEC benchmarks,
such as instantiating new instances on command and decommissioning instances at the
conclusion of the benchmark run. Usually, there are both public and proprietary cloud
management systems in use. Therefore, the harness must be extensible to support the
ability to add or modify the distributed workloads or write custom modules that allow the
benchmark to interface with the SUT’s management system.
SPEC Cloud IaaS 2016 Benchmark uses Cloud Bench, referred to as cbtool, in this
document. Cbtool is an Apache 2.0 licensed cloud benchmark harness that meets the
properties of the benchmark harness described above. Cbtool exposes an API that is
used by the baseline and elasticity + scalability drivers for executing the two phases
of the benchmark. Finally, the report generator is used to generate the report for the
baseline and elasticity + scalability phases of the benchmark.

 10

Cbtool provides connectors for creating or deleting instances on clouds such as
Amazon EC2, Digital Ocean public cloud, Google Compute Engine, IBM Softlayer, and
OpenStack. Within each cloud, the API versions can vary over time. It is the
responsibility of the tester to write or update appropriate scripts for connecting cbtool to
the cloud under test.

2.1.2	Life	Cycle	of	An	Application	Instance		
Figure 2 shows the life cycle of an application instance. Broadly, the life cycle of an
application instance can be classified into provisioning, data generation, and load
phases. Data generation and load phases constitute an application instance run
(referred to as AI run). Once cbtool receives a request to provision an application
instance, it instructs the cloud under test to create the instances. Once the instances
have been provisioned, and the application running in these instances is ready, the AI is
considered to have been provisioned. This duration is indicated by the “AI prov. time” in
Figure 2.
As soon as cbtool detects that the application is ready, it invokes a workload-specific
script to generate the data set. The workload driver uses this data set during the run.
The parameters of the workload were chosen such that data set is generated within a
reasonable amount of time (i.e., one to five minutes). As such it is possible for the
generated data to fit within an instance memory; however, within each workload, certain
must be written to disk. Moreover, a different data set is generated for each AI run and
stored in appropriate workload database.
Once the required data set has been generated, the workload driver starts the load
phase. Upon completion of the load phase, the workload driver reports the collected
metrics into cbtool. Then, any data that was generated before or during the run is
discarded. The time duration between the start of data generation to the end of data
deletion comprises an AI run.

 11

Figure 2 Life cycle of an application instance

The baseline driver generates load for the baseline phase of the benchmark. The
baseline driver creates an application instance, generates the data set, and runs the
load phase. As soon as the baseline driver receives the metrics by the workload driver,
it terminates the application instance. It then repeats the same procedure for a total of
five times. Thus, each iteration within the baseline phase comprises an AI provisioning
and a single AI run.

The elasticity + scalability driver generates the load for elasticity + scalability phase
of the benchmark. The elasticity + scalability driver instructs cbtool to create
application instances for each workload with the interval between creations using a
uniform distribution between 5 and 10 minutes. The creation of each application
instance results into a burst of instance creation requests at the cloud. The creation of
application instance for each workload is independent. Once the application instances
have been created, they go through one or more AI runs (data generation, load phase).
During each AI run, cbtool invokes the workload-centric data generation drivers to
generate the data set. The workload-centric data generation drivers generate the data
according to appropriate probability distributions. The data set is generated during each
AI run to prevent any caching that may result due to the use of same data set across
multiple application instances. During elasticity + scalability phase, application instances
are not deleted. Once the elasticity + scalability driver determines that one or more
QoS thresholds have been breached, the driver instructs cbtool to stop creating
application instances. This marks the end of elasticity + scalability phase of the
benchmark.

 12

Figure 3 Life cycle of an application instance - multiple runs

2.2	SUT	(IaaS	Cloud)	
The “System Under Test” (SUT) consists of:

● The host system(s) (including hardware and software) required to support the
workloads.

● All network components (hardware and software) that connect the external
clients to the cloud, and all network interfaces between host machines, which are
part of the SUT.

● Network components between the workload generator instances/hosts and the
SUT, which are not basic TCP/IP switches, routers, bridges or MAU (media
adapter units). Some examples include: firewalls, round-robin DNS load
balancers, load balancers, and anti-abuse filters.

● All software that is required to build, deploys, and run the specific benchmark
workload.

The SUT will support multiple instances of either physical or virtual existence.

2.3	Workloads	
SPEC has identified multiple workload classifications already used in current cloud
computing services. From this, SPEC has selected I/O and CPU intensive workloads
for the initial benchmark. Within the wide range of I/O and CPU intensive workloads,
SPEC selected social media NoSQL database transaction workload and K-Means
clustering using map/reduce as two of the most typical types within cloud computing.
The details of these workloads are described below.

 13

2.3.1	I/O	Intensive	Workload:	Yahoo!	Cloud	Serving	Benchmark	(YCSB)	
with	Apache	Cassandra	
Social network sites are one of the more popular uses for large cloud computing. Social
network sites contain many types of computing services, of which NoSQL database is a
critical component and is I/O intensive. Yahoo! Cloud Serving Benchmark (YCSB)
available under Apache 2.0 license simulates many types of database transactions,
including a read dominated transaction mixture typical of most social media database
activities. SPEC Cloud IaaS 2016 Benchmark uses YCSB workload D (95% read, 5%
insert) as the one that simulates simple social network user activities.
For NoSQL database, SPEC Cloud IaaS 2016 Benchmark uses the Apache Cassandra
database as the underlying NoSQL database because during benchmark development,
an Apache Cassandra database proved to be more sensitive to I/O and CPU resource
constraints. Apache Cassandra is available under Apache 2.0 license.
Figure 4 shows the architecture of YCSB application instance in the SPEC Cloud IaaS
2016 Benchmark. The YCSB driver instance generates load on the Cassandra cluster.
The Cassandra cluster comprises six instances. Together, these seven instances
comprise the YCSB application instance for the benchmark. The choice of six instances
for Cassandra represents a tradeoff between a trivial cluster size (e.g., two) and large
cluster sizes (e.g., twenty), and having more than one workload generators to saturate
the cluster, which will be required for large cluster sizes.

Figure 4 YCSB / Cassandra application instance in SPEC Cloud IaaS 2016 Benchmark

 14

Cassandra supports two types of nodes in its cluster configuration, namely, seeds and
data nodes. Seeds are used during startup to discover the cluster [Reference:
CassandraSeedsOne]. One design option was to use three seeds and three data
nodes. However, during experimentation, it was discovered that data nodes take a non-
deterministic time to join the cluster. Moreover, multiple data nodes joining at the same
time is potentially problematic. Per Cassandra documentation at the time of benchmark
development, a gap of two minutes is recommended between multiple Cassandra data
nodes that join an existing cluster [Reference: CassandraAddDataNodes]. Therefore,
YCSB application instance uses six seeds as the six Cassandra instances.

2.3.1.1 Workload driver

YCSB driver instance generates load on the Cassandra cluster. YCSB driver instance
can be configured with a variable number of threads to generate load on the Cassandra
cluster. It is up to the cloud provider to determine the number of threads for YCSB driver
instance (the default is 8 threads). In general, a higher number of threads will yield a
higher throughput for Cassandra cluster until limits within the YCSB driver instance or
Cassandra cluster are reached. If limits within YCSB driver instance are reached,
adding more threads will not result in the YCSB driver instance sending more requests
per second. If limits within the Cassandra cluster are reached, adding more threads in
YCSB driver instance will not result into an increased throughput. Moreover, generating
high throughput using a large number of threads may be susceptible to larger
performance degradation as load on the cloud increases.

Table 1 shows the parameters used for YCSB driver. These parameters cannot be
changed in any phase of the benchmark. The choice of total records inserted in DB is a
careful design decision. During elasticity + scalability phase, the data is generated for
each AI run. The experimentation revealed that on average, generating a database with
1 million records took more than ten minutes. Since an AI run includes data set
generation as well as the load phases, the total records inserted were kept to
1,000,000. Given the default record length of 1KB, the data size is one GB. The
effective data size with three-way replication is at least three gigabytes across six
Cassandra seeds. As such this data is small enough to fit within the memory. However,
5% of the total operations are writes, which result into disk I/O during load generation.
Moreover, the data set generation before an AI run also results into disk and network
I/O.
The choice of request distribution governs which records become the most popular. The
‘latest’ distribution implies that the recently inserted records will become the most
popular.

Table 1 YCSB configuration parameters for SPEC Cloud IaaS 2016 Benchmark

Description YCSB parameter YCSB parameter value

Total records inserted
in DB

recordcount 1,000,000

 15

Total operations during
a YCSB run

operationcount 1,000,000

Workload uses workload com.yahoo.ycsb.workloads.CoreWorkload
Read all fields in the
records returned

readallfields true

Proportion of read
operations

readproportion 0.95

Proportion of update
operations

updateproportion 0

Proportion of scan
operations

scanproportion 0

Proportion of insert
operations

insertproportion 0.05

Request distribution requestdistribution Latest

Default data size of
each record

1KB 10 fields, 100 bytes each, plus key

2.3.1.2 YCSB metrics

Following metrics from YCSB are used for elasticity + scalability score calculations:

• Throughput (ops/sec)

• 99th percentile of insert response time (ms)
• 99th percentile of read response time (ms)

2.3.2	Compute-intensive	workload	-	K-Means	with	Apache	Hadoop	
The K-Means algorithm is a popular clustering algorithm used in machine learning.
SPEC Cloud IaaS 2016 Benchmark uses Intel HiBench K-Means implementation
[Reference: HiBenchIntro]. K-Means is one of the nine Hadoop workloads that are part
of the HiBench suite. HiBench was selected as the benchmark suite as it provides
multiple Hadoop workloads and has a uniform interface for running these workloads.
HiBench uses Apache Mahout [Reference: ApacheMahout] for K-Means
implementation. The HiBench K-Means workload was selected based on its range of
workload models, and built-in data generator to drive the load.
The workload comprises a Hadoop name node instance, which also runs the Intel
HiBench workload driver. The data is processed on five Hadoop data nodes. Together,

 16

these six instances comprise the K-Means application instance in SPEC Cloud IaaS
2016 Benchmark. Figure 5 shows the logical architecture of K-Means application
instance in SPEC Cloud IaaS 2016 Benchmark.

Figure 5 K-Means application instance

SPEC Cloud IaaS 2016 Benchmark uses Apache Hadoop (v2.7.1 or higher).

2.3.2.1 K-Means description

(The description in this section is copied verbatim from
https://mahout.apache.org/users/clustering/k-means-clustering.html)

K-Means is a simple but well-known algorithm for grouping objects and clustering. All
objects need to be represented as a set of numerical features. In addition, the user has
to specify the number of groups (referred to as k) or clusters.
Each object can be thought of as being represented by some feature vector in an n-
dimensional space, where n is the number of all features used to describe the objects in
a cluster. The algorithm then randomly chooses k points in that vector space, and these
points serve as the initial centers of the clusters. Afterwards, all objects are each
assigned to the center they are closest to. Usually the distance measure is chosen by
the user and determined by the learning task.

 17

After that, for each cluster a new center is computed by averaging the feature vectors of
all objects assigned to it. The process of assigning objects and recomputing centers is
repeated until the process converges. The algorithm can be proven to converge after a
finite number of iterations.

2.3.2.2 Workload driver

HiBench driver runs on the Hadoop namenode. It generates the dataset to be used by
K-Means. It uses uniform distribution to generate centers for K-Means and uses
Gaussian distribution to generate samples around these centers. Following attributes
are used in data generation and for K-Means clustering.

Table 2 HiBench configuration parameters for SPEC Cloud IaaS 2016 Benchmark

Parameter Value

NUM_OF_SAMPLES 1,000,000
SAMPLES_PER_INPUTFILE 500,000

NUM_CLUSTERS 5

DIMENSIONS 20

MAX_ITERATION 5

CONVERGENCE_DELTA (-
cd option)

0.5

CANOPY_CLUSTERING (-
cl option)

Used

The NUM_CLUSTER parameter indicates that the maximum number of clusters (or K)
to be found is set to five. The DIMENSIONS parameter indicates that the number of
features in a sample vector is set to twenty. The HiBench driver uses the
EuclideanDistance to compute the distance between the sample object and the chosen
centroid.
To bound the time it takes to run K-Means, MAXIMUM_ITERATION of five is specified.
In theory, it implies that the algorithm can terminate before the
CONVERGENCE_DELTA (cd) value of 0.5 is reached. This was considered an
acceptable tradeoff. The CANOPY_CLUSTERING option indicates that input vector
clustering is done after computing canopies. Canopy clustering is used to compute the
initial k vectors for K-Means.
No compression is enabled for Hadoop.

 18

Overall, the choice of these parameters dictated that on a 2 VCPU, 4GB virtual
machine, it approximately takes 10 minutes to generate the data set and to run the K-
Means algorithm.
Similar to YCSB, the choice of parameters for data generation for K-Means was a
tradeoff between the time it takes to generate the data and run the K-Means algorithm.
The size of the generated data set is approximately 415 MB. The total size of the data
at the end of a run is approximately 900MB. With Hadoop’s three-way replication, the
size on disk is approximately 2.8 GB.

The commands to run K-Means load driver are copied from the code for reference:

OPTION="$COMPRESS_OPT -i ${INPUT_SAMPLE} -c ${INPUT_CLUSTER} -o
${OUTPUT_HDFS} -x ${MAX_ITERATION} -ow -cl -cd 0.5 -dm
org.apache.mahout.common.distance.EuclideanDistanceMeasure -xm mapreduce"

${MAHOUT_HOME}/bin/mahout kmeans ${OPTION}

2.3.2.3 K-Means Metrics

Following metrics are reported:

• Completion time (seconds)

2.4	Reference	Platform	
The benchmark uses results from a reference platform for Scalability metric
computation purposes. Member companies participating in the benchmark
development collected these results.
Specifically, each company participating in the benchmark development submitted
baseline results for YCSB (throughput) and K-Means (completion time) workloads for
two types of instance sizes. These results were obtained without applying any
performance tuning. The results are then averaged to compute a reference platform
throughput and completion time for YCSB and K-Means, respectively. The average
removes the bias towards one particular cloud platform.
The details for reference platform computation are in Appendix 1: SPEC Cloud IaaS
2016 Benchmark Reference Platform Metrics.

3.	Running	the	Benchmark	
cbtool exposes an API which is used by baseline and elasticity + scalability drivers to
drive the workloads as per the requirements of baseline and elasticity + scalability
phase (see Figure 1) Deleted: Figure 1

 19

3.1	Setup	(Manual)	
The tester installs the SPEC Cloud IaaS 2016 Benchmark software onto one or more
hosts that can be co-located within the same cloud as the system under test (SUT), or
on an external network to the SUT. The tester ensures that cbtool can connect to its
cloud.
The tester then installs and configures two instances for YCSB/Cassandra and
HiBench/Hadoop by following the instructions in the user. The tester must take a
snapshot of these instances in an instance image. The tester then ensures that it can
create an application instance for YCSB and K-Means workloads, destroy them, and
see their results in the cbtool UI. Once a tester sees the results in cbtool UI, it is ready
to start the benchmark phases. A tester may run the baseline and elasticity + scalability
phases couple of times as a trial run before starting a compliant run. Please refer to the
user guide for details on how to run the baseline phase.
The tester is expected to ensure that the cbtool can connect to the cloud under test. If a
cloud is not supported, the tester must write a cbtool adapter for the cloud under test.
Black-box clouds (public clouds) are typically multi-tenant. Multi-tenancy implies that
one or most tenants (Cloud consumers) share the underlying cloud infrastructure such
as compute, network, and storage with each other. In white-box clouds, both hardware
and software are under the control of the tester. White-box cloud can be run as a single-
tenant or multi-tenant. SPEC Cloud IaaS 2016 Benchmark does not place any limitation
on how many tenants are defined for white-box cloud. It is up to the tester to configure
the number of tenants. The metrics are aggregated across all tenants in the final score.

3.2	Baseline	(Automated)	
SPEC Cloud IaaS 2016 Benchmark baseline driver instructs the cbtool through its API
to create and destroy a single application instance for each workload five times. cbtool
instantiates the data generation in each application instance and then starts the load
generators. At the end of each of the five runs of a workload, the baseline driver collects
the supporting evidence. If there is no error in the five runs of an application instance as
reported by cbtool and the results meet the bounds defined for Quality-of-Service
thresholds, the baseline result is considered valid.
cbtool records the settings and results associated with the most optimal performance,
i.e. average of throughput, completion time and other similar criteria, as well as instance
sizes. These settings and measurements are the baseline measurements and
configurations and must be used by the tester in later steps.

3.3	Elasticity	+	Scalability	(Automated)	
SPEC Cloud IaaS 2016 Benchmark elasticity + scalability driver instructs the cbtool via
its API to connect to the cloud and repeat the following cycle until one or more stopping
conditions exist.

 20

1. Start one application instance for each workload randomly between five and 10
minutes.

2. Asynchronously, wait until each application instance is ready to accept work, and
repeat the following sequence.

a. Start the data generation for each application instance
b. Start the configured workload driver and wait until it completes
c. Record results and verify that are within QoS thresholds, and increment

associated counters.
d. Destroy any generated data, and repeat step a-c.

3. On every new instance creation or when results for an AI run are received:
a. Check for application instance related stopping conditions.
b. If within acceptable conditions, go to Step 2.
c. If outside acceptable conditions or maximum AIs as set by the tester, stop

the execution of the elasticity + scalability phase and collect supporting
evidence.

SPEC Cloud IaaS 2016 Benchmark elasticity + scalability driver uses cbtool to detect
the following stopping conditions. The details for stopping conditions are in the Run and
Reporting Rules document:

o 20% or more of the AIs fail to provision
o 10% or more of the AIs have any errors reported in any of the AI runs.

This includes AIs that fail to report metrics after 4 x the completion time of
baseline phase.

o 50% of the AIs or more have QoS condition violated across any run
o Maximum number of AIs as set by the tester is reached.

3.3.1	Arrival	Rate	of	AIs	
The arrival rate of AIs for each workload is uniformly distributed between 5 and 10
minutes throughout the benchmark run. Each AI results into a burst of instance creation
requests; seven instance creation requests for YCSB and six instance creation requests
for K-Means, respectively.

3.4	White-box	vs.	black-box	cloud	considerations	
Blackbox (public) cloud variations may have performance variations due to multi-
tenancy, use of different hardware, or time of day [Reference: EC2PerfVariations]. It is
important to take criteria such as time of day and geographies in to consideration when
evaluating cloud performance metrics. The benchmark can be run across multiple times
of day to measure variation in performance of blackbox clouds.

 21

4.	Metrics	and	Computations	

The SPEC Cloud IaaS 2016 Benchmark reports eight metrics, namely,

• Elasticity

• Scalability
• Mean Instance Provisioning Time

• AI Provisioning Success

• AI Run Success

• Total Instances

• Elasticity Start Time

• Elasticity End Time

These metrics are defined below. The details for computing these metrics are included
in Run and Reporting Rules document.

4.1		SPEC	Cloud	IaaS	2016	Benchmark	Elasticity	Metric	
Elasticity measures whether the work performed by application instances scales linearly
in a cloud. That is, for statistically similar work, the performance of N application
instances in a cloud must be the same as the performance of application instances
during baseline phase when no other load is introduced by the tester. Elasticity is
expressed as a percentage (out of 100).
The guideline for interpreting elasticity results is follows:

• Fair: 50-70%
• Good: 70%-80%

• Excellent: 80-100%

The aggregate elasticity metric is an average of elasticity metrics for two workloads. It is
expressed as a percentage out of one hundred. The higher the result is, the better.

Elasticity = (ElasticityKMeans + ElasticityYCSB) / 2

4.1.1	Discussion	

 22

In SPEC OSG Cloud report [Reference: CloudWhitePaper], Elasticity has been defined
as a function of provisioning time, agility, scale up/down and elastic speedup.
Provisioning time is defined as the duration between requesting a resource and when
that resource is ready to serve the request. This metric is captured by the
AI_prov._time for each AI.
The agility metric was defined as the ability of the system provisioned to be as close to
the needs of the workload as possible while maintaining a specified QoS. Similar to this
definition, Herbst et al. [Reference: ElasticityICAC] define elasticity as the degree to
which a system is able to adapt to workload changes by provisioning and
deprovisioning resources in an autonomic manner, such that at each point in time
the available resources match the current demand as closely as possible. It is
difficult to precisely compute the agility metric or the elasticity metric defined by Herbst
et al, which will measure elasticity of the cloud and not applications, and allow
meaningful comparisons across clouds.
Scale up/down is defined as a measurement of the system’s ability to maintain a
consistent unit completion time when solving increasingly larger problems, by adding a
proportional amount of storage and compute resources. Elastic speedup is defined as
whether adding SUT resources as the workload is running results in a corresponding
decrease in response time. As such both scale up/down and elastic speed up measure
the application performance. The focus of the SPEC Cloud IaaS 2016 Benchmark is to
measure the elasticity of the cloud and not of specific applications.
YCSB and K-Means application instances are configured to perform a fixed amount of
work in SPEC Cloud IaaS 2016 Benchmark. As load on a cloud increases by adding
more application instances, the workload specific metrics may get affected. That is, the
throughput of YCSB across AI runs of application instances may decrease or insert/read
response time of YCSB may increase, or the completion time of K-Means may increase,
or the time to provision an application instance may increase relative to the metrics
computed during the baseline phase.
The definition of elasticity for SPEC Cloud IaaS 2016 Benchmark measures this
decrease in throughput or increase in response time or completion or provisioning time
relative to baseline metrics for each application instance. The degradation shows that
the amount of compute, storage, and network resources available to each application
instance of a workload performing the same amount of work, decrease, thereby,
degrading the application metrics. The degradation is computed by averaging metrics
over all AI runs for an application instance, and then further averaging over all AIs. In a
perfectly elastic cloud, the degradation will be zero.
Recall that each a new data set is generated within each AI run. The data set was
generated for each AI run so that any caching affects due to same data set across AIs
are minimized. This procedure implies that the amount of work to be performed by an AI
within every AI run is statistically similar but not exactly similar.
To counter the affects of statistically similar data sets, the baseline results are average
over five runs. Similarly, throughput, completion time, and insert/read response time are
averaged over all AI runs for all AIs. This averaging of results will reduce the degree of
variability that arises due to dissimilarity in statistically similar data sets.

 23

4.2		SPEC	Cloud	IaaS	2016	Benchmark	Scalability	Metric	
Scalability measures the total amount of work performed by application instances
running in a cloud. The aggregate work performed by one or more application instances
should linearly scale in an ideal cloud. It answers the question: How much more gets
done if N instead of one (1) application instances? Ideally, each additional
application instance will contribute 100% of its individual capability, but this may not be
the case as the cloud gets loaded with multiple application instances or other workloads
(for public clouds).

Scalability is reported as a unit-less number @ the number of valid application
instances. The number is an aggregate of workloads metrics across all application
instances running in a cloud normalized by workload metrics in a reference cloud
platform. The reference platform metrics are an average of workload metrics taken
across multiple cloud platforms during the benchmark development.

The actual benchmark Scalability metric is the sum of all workload scalability scores.

Scalability = Sum (ScalabilityKMeans, ScalabilityYCSB) @
Sum(YCSB_Application_Instances, KMeans_Application_Instances)

Scalability metric is a unit-less number. A higher value is better.

4.2.1	Discussion	
The Scalability formula captures the work done by a cloud. If a cloud does more work
than the other cloud for the same amount of resources while meeting QoS thresholds,
than it has a higher scalability score than the other cloud.
SPEC Cloud IaaS 2016 Benchmark uses YCSB and K-Means workloads. The metrics
used from these workloads are throughput for YCSB; and completion time for K-Means.
In general, higher throughput is preferred and lower completion time is preferred. Since
the metrics of two workloads have different units (operations per second for throughput,
and seconds for completion time), these metrics cannot directly be combined in a single
scalability score. While the benchmark full disclosure report includes individual metrics
of each workload, it was considered necessary to devise workload independent metrics
that are reported in the final score.

 24

The solution in coming up with a single metric for scalability was to normalize the raw
throughput, and completion time metrics computed for a cloud by a reference cloud.
Since it is difficult to come up with one definition of a reference cloud, the participating
companies in the design of SPEC Cloud IaaS 2016 Benchmark ran baseline phase for
YCSB and K-Means workloads in their clouds without applying any tunings, and
reported the results. The baseline results reported by the participating companies are
then averaged to compute the reference platform throughput and completion time
metrics. The throughput and completion results for a cloud are then normalized with the
reference platform throughput and completion time results to compute a workload
agnostic scalability score.
The Scalability formula may somewhat be dominated by one workload. This can happen
due to two reasons. One, the number of application instances for one workload is higher
than the other workload. The number of application instances for one workload may be
higher, because each work runs independently. SPEC Cloud IaaS 2016 Benchmark
puts a lower bound on the percentage of AIs for a workload used for scalability score
computation, that is, the percentage of AIs from a workload must be greater than or
equal to 40%.
The other reason is that depending on the underlying cloud configuration (hardware and
software), one workload may perform much better (e.g., higher throughout for YCSB,
lower completion time for K-Means) than the reference platform. As a result, the
scalability metric may somewhat be skewed towards one workload. This is considered
acceptable for this release of the benchmark. In future, the reference platform metrics
may be updated to reflect more modern hardware configurations.
In the Scalability metric, a reference provisioning time for an AI is not used. The reason
is that provisioning time can vary widely for instances. For a cloud comprising of VMs,
they are typically order of 10s of seconds, for a cloud comprising of bare metal
machines, order of minutes, and for a cloud comprising of containers, order of few
seconds. It is difficult to derive a reference provisioning time as a function of three
different technologies. Therefore, SPEC Cloud IaaS 2016 Benchmark does not use it for
reference platform computations. Instead, it relies on the workload performance metrics
for computing the reference platform metrics.

4.3		SPEC	Cloud	IaaS	2016	Benchmark	Mean	Instance	Provisioning	Time	
Metric	

Means Instance Provisioning Time represents an average of provisioning time of all
instances in valid application instances.

4.4		SPEC	Cloud	IaaS	2016	Benchmark	AI	Provisioning	Success	Metric	
This metric indicates the percentage of AIs that were successfully provisioned.

 25

4.5		SPEC	Cloud	IaaS	2016	Benchmark	AI	Run	Success	Metric	
This metric indicates the percentage of AIs that had all successful runs.

4.6		SPEC	Cloud	IaaS	2016	Benchmark	Elasticity	Start	time	Metric	
This metric indicates the time at which the elasticity phase of the benchmark was
started by the harness.

4.7		SPEC	Cloud	IaaS	2016	Benchmark	Elasticity	End	time	Metric	
This metric indicates the time at which the elasticity phase of the benchmark was
stopped by the harness.

4.8		SPEC	Cloud	IaaS	2016	Benchmark	Total	Instances	Metric	
This metric indicates the total instances provisioned during the benchmark that
belonged to application instances with one or more runs.

4.9	Metric	Reporting	

An example of the metrics is shown below.

SPEC Cloud IaaS
2016 Metrics

Scalability Elasticity Mean Instance Provisioning
Time

10.349 @ 5
Application
Instances

86.88% 229s

AI Provisioning
Success

AI Run Success Elasticity Phase Start time

97% 95% 2015-01-15_16:15:23_UTC

 Total Instances Test Region Elasticity Phase End Time
 33 Instances Oregon data center 2015-01-15_19:47:53_UTC

 26

	4.9.1	Discussion	on	the	Metrics	Reported	in	the	Final	Score	
Average Instance provision time is subsumed under AI provisioning time, which is part
of the elasticity score. Since raw instance provisioning time has been a key metric
reported in the literature and is easy to compare, it is reported separately in the final
score.

4.9.2	Setting	the	Limit	for	Maximum	AIs	
A cloud provider may set the limit on the maximum AIs that will be run in its
environment. If this limit is set to a small value, the scalability score may be small while
there may be a small degradation for the elasticity metric. Similarly, average instance
provisioning time may not be impacted.

In general, a cloud with higher scalability and elasticity score, lower provisioning times
and errors is better than a cloud with low scalability and elasticity scores, and higher
provisioning times or errors.

 27

4.10		Benchmark	Calculation	Example	
The following is an example of how the SPEC Cloud IaaS 2016 Benchmark metrics will
be calculated.

RefPlatThrYCSB: 8171.23 ops/s
RefPlatComTimKMEANS: 189.1s

YCSB K-Means

Baseline Throughput: 6200 ops/s
Baseline Insert 99% time: 9ms
Baseline Read 99% time: 5ms
Baseline YCSB Deploy time: 220s

Baseline Completion Time: 400 s
Baseline K-Means Deploy time: 180s

Valid_AIs: 14

c

c

Time

Nu
m
be

r	o
f	A

Is
	a
nd

	A
I	i
nd

ex

Stopping	condition

c

c

c

c

AI		
Provisioned

2
nd
	run		

complete
1
st
	run		

complete

YCSB K-Means

 28

YCSB AIs

Total YCSB AIs: 7

AI # Total

runs
Failed
runs

AI Prov.
Time (s)

Throughput
of last run
before stop.

Throughput
average
over runs

Insert
99% resp.
time (ms)

Read 99%
resp time
(ms)

2 7 0 240 4900 6000 10 5

4 6 0 220 5300 6100 10 4

6 8 0 245 5200 5900 14 6

8 6 0 260 5100 5500 15 5

10 5 0 280 5000 5700 20 7

12 4 0 295 4800 5200 25 8
14 5 0 315 4900 5100 25 9

Average YCSB AI Prov. Time (240 + 220 + 245 + 260 + 280

+ 295 + 315) / 7
265

Average Throughput (6000 + 6100 + 5900 + 5500
+ 5700 + 5200 + 5100) / 7

5643

Average Insert 99 Response
Time

(10 + 10 + 14 + 15 + 20 + 25
+ 25) / 7

17

Average Read 99 Response
Time

(5 + 4 + 6 + 5 + 7 + 8 + 9) / 7 6.3

	

ElasticityYCSB	=	

(0.375	x	Min(1,:;<=>?<	@A=BC?ADCE
F>G<	@A=BC?ADCE

)+	0.1875	𝑥	𝑀𝑖𝑛(1, F>G<	OPG<=E	QQ	R<GD@ST<:;<=>?<	OPG<=E	QQ
R<GD@ST<

)	

+	0.1875	𝑥	𝑀𝑖𝑛(1, F>G<	R<>U	QQ	R<GD@ST<:;<=>?<	R<>U		QQ
R<GD@ST<

)	+	0.25	x	Min(1,F>G<	WXYF	:O	Z=B;.		@ST<
:;<=>?<	Z=B;.@ST<

))	x	100	

	
=	(0.375	x	(5643	/	6200)	+	0.1875	x	(9	/	17)	+		0.1875	x	(5	/	6.3)	+	0.25	x	(220	/	
265))	*	100	=	79.7%	
	

	

	

 29

ScalabilityYCSB	=	Sum	(Last_Throughput_AI(i)	/	RefPlatThrYCSB)	where	(i)	is	from	1	to	
Valid_AIs	for	YCSB	

	 	 =		(4900	+	5300	+	5200	+	5100	+	5000	+	4800	+	4900)	/	8171.23	=	4.307	
@	7	Application	Instances

KMeans AIs
Total K-Means AIs: 7

AI # Total
runs

Failed
runs

AI. Prov.
Time (s)

Average of
Completion
Time over
all runs

1 9 0 190 390
3 7 0 170 420

5 6 0 160 350

7 6 0 200 450

9 7 0 210 440

11 5 0 220 480

13 6 0 200 490

Average KMeans AI Prov.
Time

(190 + 170 + 160 + 200 + 210
+ 220 + 200) / 7

193

Average Completion Time (390 + 420 + 350 + 450 + 440
+ 480 + 490) / 7

431

ElasticityKMeans	=	

(0.75		x	Min(1,		 F>G<	XBTDwE@ST<
:;<=>?<	XBTDwE@ST<

)	+	0.25	𝑥	Min(1, F>G<	xy<>PG	:O	Z=B;.		@ST<
:;<=>?<	xy<>PG	:O	Z=B;.@ST<

))	x	100	

=	(0.75	x	(400	/	431)	+	0.25	*(180	/	190))	*	100	=	93.3%		
	
ScalabilityKMEANS	=	Sum	(RefPlatComTimKMEANS	/	Avg_Compl._Time_AI(i))		
where	(i)	is	from	1	to	Valid_AIs	for	YCSB	AIs	

 30

	
=	189.1	x	(1	/	390	+	1	/	420	+	1	/	350	+	1	/	450	+	1	/	440	+	1	/	480	+	1	/	490)	=	3.105	
@	7	Application	Instances	
	
Elasticity score = (79.7% + 93.3%) / 2 = 86.5%

Scalability score = 4.307 + 3.105 = 7.4 @ 14 Application Instances

Final score:
Scalability: 7.4 for 14 AIs
Elasticity: 86.5%
Means Instance Provisioning Time: 229s (calculations not shown)

with:

AI Provisioning Success=100%
AI Run Success=100%

5	Limitations	of	the	benchmark		

SPEC Cloud IaaS 2016 Benchmark has the following limitations.

1. SPEC Cloud IaaS 2016 Benchmark is a benchmark for infrastructure-as-a-
service clouds. It does not measure the performance of platform-as-a-service
clouds or software-as-a-service clouds.

2. The benchmark does not explicitly measure CPU, memory, network or storage
performance of an instance. The performance of these components is indirectly
measured through YCSB and K-Means workloads that utilize Apache Cassandra
and Apache Hadoop, respectively. A cloud provider is free to choose instance
configuration.

3. The arrival time of application instances is uniformly distributed between five and
10 minutes. Within a single AI, a burst of seven or six instances arrives for YCSB
and K-Means workload, respectively. The elasticity + scalability driver does not
adjust the arrival time of AIs during the benchmark run. One reason for not
changing the arrival time of AIs is that a cloud may rate limit the number of
instances that can be created within a unit time.

4. The size of the data set generated for YCSB and K-Means workloads may fit
within the memory of the instances. Since each application instance of YCSB or
K-Means generates a new data set from probability distributions, any caching

 31

across AIs due to the use of same data set is minimized. Nevertheless, data
caching within the memory of an instance of AI can occur.

5. The work performed by each run across different application instances of the
same workload is statistically similar but not exactly similar. This was a deliberate
design decision to minimize any performance enhancement, which may result
from performing an exactly similar work across application instances. Variable
work for different workloads is not part of the SPEC Cloud IaaS 2016
Benchmark.

6. Client-server workloads (REST HTTP) (e.g., DayTrader or SPEC Web
benchmark) are an important class of workloads that run on cloud. For these
types of workloads, the clients typically run outside the cloud. To mimic these
workloads on a cloud, the workload generators may have to be outside cloud.
Such workloads will be incorporated in the next release of the benchmark.

7. SPEC Cloud IaaS 2016 Benchmark supports one or more tenants. However, it
does not enforce the use of multiple tenants. The reason is that black-box clouds
are typically multi-tenant, in the sense that the tenants may share the compute,
storage, or network infrastructure. However, since white-box clouds are under
the full-control of tester and may not have any background load, a cloud provider
may desire to run workloads under more than on tenants. Moreover, a cloud may
solely focus on scalability and not multi-tenancy.

6	Full	Disclosure	Reports	
SPEC Cloud IaaS 2016 Benchmark will generate the data set used to create the Full
Disclosure Report (FDR) for each run. Part of the FDR will report statistics from the
collected data set and the computed scores. The FDR will also provide enough detailed
information on the SUT configuration to qualify as a 'Bill of Materials' (BOM). The intent
of the BOM is to enable a reviewer to confirm that the tested configuration satisfies the
run rule requirements and to document the components used with sufficient detail to
enable a customer to reproduce the tested configuration and obtain pricing information
from the supplying vendors for each component of the SUT.

 32

 33

	
Appendix	1:	SPEC	Cloud	IaaS	2016	Benchmark	Reference	
Platform	Metrics	
The benchmark uses results from a reference platform for Scalability metric
computation purposes. The results were collected from cloud platforms of participating
member companies.
Specifically, the baseline results were collected for YCSB (throughput) and K-Means
(completion time) workloads for ”medium” instance sizes. These results were obtained
without applying any performance tuning. The results are then averaged to compute a
reference platform throughput and completion time for YCSB and K-Means,
respectively. The average reduces the bias towards one particular cloud platform.

Reference metrics for “medium” instance size, which is 2 VCPUs, 4-8GB RAM, 30-
40GB disk

A1.1	YCSB	Reference	Metrics	

YCSB throughput (ops/s) reference metrics

YCSB
throughput

Participant
A, Cloud 1
(whitebox)

Participant
B, Cloud 1
(blackbox)

Participant
C, Cloud 1
(whitebox)

Iteration

1 8695.50 7298.26 8643.34

2 8769.01 7156.66 8399.97

3 8839.31 7841.91 8468.48

4 8461.31 7237.51 8604.67

5 8910.04 6689.86 8552.64

Average 8735.03 7244.84 8533.82

Reference platform throughput (medium) = 8171.23 ops/s

 34

YCSB 99% Insert response time (ms) reference metrics

YCSB
Insert Resp.
time (99%)

Participant
A, Cloud
1
(whitebox)

Participant
B, Cloud
1
(blackbox)

Participant
C, Cloud 1
(whitebox)

Iteration

1 1.48 1.95 1.54

2 1.37 2.40 1.48

3 1.59 1.90 1.63

4 1.68 1.79 1.42

5 1.54 2.08 1.36

Average 1.53 2.02 1.49

Reference platform insert response time (medium) = 1.68 ms

YCSB 99% Read response time (ms)

YCSB
Read
Resp. time
(99%)

Participant
A, Cloud 1
(whitebox)

Participant
B, Cloud 1
(blackbox)

Participant
C, Cloud 1
(whitebox)

Iteration

1 1.87 2.52 1.93

2 1.84 2.64 2.03

3 1.87 2.23 2.02

4 1.93 2.4 1.84

5 1.95 3.13 1.90

Average 1.89 2.58 1.94

Reference platform read response time (medium) = 2.14 ms

 35

A1.2	K-Means	Reference	Metrics	
K-Means completion time (s)

K-Means compl.
Time (s)

Participant
A, Cloud 1
(whitebox)

Participant
B, Cloud 1
(blackbox)

Participant
C, Cloud 1
(whitebox)

Iteration

1 230 233 132

2 117 329 100

3 128 178 165

4 131 291 185

5 102 285 230

Average 141.6 263.3 162.4

Reference platform K-Means completion time (medium) = 189.1s

 36

Appendix	2:	References	

Keyword Bibliography Information

CloudWhitePaper SPEC OSG Cloud Working Group whitepaper
https://www.spec.org/osgcloud/docs/osgcloudwgreport20
120410.pdf

Cbtool IBM Cloud Bench https://github.com/ibmcb/cbtool

 Dumitras, T., & Shou, D. (2011). Toward a Standard
Benchmark for Computer Security Research. Carnegie
Mellon University
https://www.umiacs.umd.edu/~tdumitra/papers/BADGER
S-2011.pdf

NISTPub145 Mell, P., & Grance, T.; NIST Definition of Cloud
Computing, Publication No. 145, 2011
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpu
blication800-145.pdf

ElasticityICAC Herbst, N., Kounev, S., Reussner, R. Elasticity in Cloud
Computing: What it is, and What it is Not. In Proceedings
of the 10th International Conference on Autonomic
Computing (ICAC 2013), San Jose, CA, June 24-28
https://sdqweb.ipd.kit.edu/publications/pdfs/HeKoRe2013
-ICAC-Elasticity.pdf

HiBenchIntro Hadoop Benchmark Suite (HiBench) documentation
https://github.com/intel-hadoop/hibench/#overview

KMeansClustering http://en.wikipedia.org/wiki/K-means_clustering

ApacheCassandra http://cassandra.apache.org/

ApacheHadoop https://hadoop.apache.org/

 37

ApacheMahout http://mahout.apache.org/

YCSBWhitePaper Yahoo! Cloud Serving Benchmark (YCSB) Results
Report. Cooper, Brian; version 4, 2010
http://www.brianfrankcooper.net/home/publications/ycsb.
pdf

CassandraSeeds http://wiki.apache.org/cassandra/FAQ#seed

CassandraAddDataNodes http://docs.datastax.com/en/cassandra/2.0/cassandra/op
erations/ops_add_node_to_cluster_t.html

EC2PerfVariations http://www.infoworld.com/article/2613784/cloud-
computing/benchmarking-amazon-ec2--the-wacky-world-
of-cloud-performance.html

Copyright © 1998-2016 Standard Performance Evaluation Corporation (SPEC). All
rights reserved.

Revision Date: July 28, 2016

