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How important is MPI for SGI

� The Message Passing Interface (MPI) standard

MPI is a library specification for message-passing, proposed as a standard by a broadly 

based committee of vendors, implementers, and users. 

� SGI is a major provider in the High Performance  Processing (HPC) world with 20 machines in 

the top500 faster computer in the world

A large majority of the flops executed with these 

machines are executed  by MPI applications
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A general performance tool tradeoff

� What do we want to know with the tool
– Data about elements that are important for the MPI library developer may be 

of little interest for the user that have no way to interact with such elements

� How to use the tool
– Use the binary the way it is or change it (recompile, relink, insert calls in the 

source )

– How to fire up the tool

� What to gather
– Cumulative measurement stats

– Modeled results

– Traces

� What to report
– Raw data

• Need for powerful post-processing ?

– Pre-interpreted data

� Amount of resources to make it
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MPInside Purpose

� To gain a better understanding of the interaction between application and MPI 

library/interconnect network by diving “inside” the internals of each
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�For the application developers to understand the consequence of their choices for exchanging 

data 

�For our performance engineering group that needs to commit on application performance 

with future hardware
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MPInside Design goals

� To require no re-compilation or re-linking.

� To use a simple command line interface.

� To be useable with thousands of ranks without overhead.

� To work without traces and without post-processing. 
o This is a strong constraint that needs to use innovative and courageous 

solutions

� To handle various communication models, in particular the perfect 
interconnect (zero latency, infinite bandwidth). 

� To produce simple text, easy to parse, raw output to be  processed 
with common scripting tools(awk,..) and a spreadsheet 

� To be portable to any MPI library for its basic features.

� To support the full MPI 1.2 specifications and the MPI-2 one-sided 
communications.
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MPInside Basic Statistics

NPB CG, 256 ranks, SGI Altix ICE
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Collective Wait Time

setenv MPINSIDE_EVAL_COLLECTIVE_WAIT

A simple MPI_Barrier is inserted before the collective function assuming:

<Time collective> = <time to synchronize> + <time collective with fully 
synchronized arrivals>
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Late Senders

setenv MPINSIDE_EVAL_SLT

Calculates per-rank times when sends were late for blocking MPI 

functions(MPI_Recv, MPI_Wait,..)
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Late Senders Time: How to capture it ?

�Have a synchronized clock (SGI Altix, UV, future ICE): 

�A mechanism to send/recv a supplemental piece of information (at least the 

send posting time) with the user buffer needs to be implemented

�Clocks are not synchronized and deviates ( the casual situation on clusters)

�Use a stuttering method:

Send/recv fisrt a zero message size then the data

Time recv = Time Waiting send is posted  + time transfer

Approximated as

Time to get zero message size + time to recv when send is surely posted

Only applicable with Bandwidth sensitive applications

�More on next slide



11

Stuttering method: Just look at my local 

clock
Rank 0 Rank 1

1:MPI_Irecv(from 1,app tag ) MPI_Irecv(from 0,app tag )

2:MPI_send(to 1) MPI_send(to 0)

3:MPI_Wait (recv) MPI_Wait(recv)

Stuterring method:

1a:MPI_Irecv( from 1, app tag) MPI_Irecv(app tag from  0)

2a:MPI_Isend(to 1,app tag) MPI_Isend(to 0,app tag)

2b:MPI_Isend(to 1,data,token tag)  MPI_Isend(to 0,da ta,token tag)

2c:MPI_Wait (request 2a) MPI_Wait(request 2a)

2d:MPI_Wait (request 2b) MPI-Wait(request 2b)

3a:MPI-Wait(request 1a) MPI_Wait(request 1a)

3b:MPI_Recv(from 1, token tag) MPI_Recv(from 0,token tag)

-The 3a “zero 

message” Time is 

the “Send Late 

Time”

-The 3b time is the 

time of a transfer 

with ready send
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PARATEC Example

PARATEC 256 ranks, SGI Altix ICE
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Derived Statistics

Linpack 256 CPU on ICE
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MPInside Modeling

� Uses virtual clocks to perform on-the-fly “what if” experiments. Such 
virtual clocks are incremented by the measured computational times and 
by an evaluation of the communication times

� Communication model:

– T(size) = latency + size / bandwidth(size, network load)

� “Perfect” interconnect:

– latency = 0, bandwidth = ∞
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MPInside Modeling continue

� As there is no standard mechanism in MPI for the library to 

notify tools for internal event a deep knowledge of the MPI 

library internals is necessary to handle collective function 

properly. This is why modeling is restricted to the SGI MPI 

library

� Perfect interconnect is an exception:

– For each collective operation all the virtual clocks are exchanged 

between processors. The latter arrival imposes its clock. Then the 

collective operation is perfect. 
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Perfect Interconnect Example

PARATEC 256 ranks, SGI Altix ICE
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setenv MPINSIDE_MODEL PERFECT+1.0
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Case Study

SPEC MPI candidate code, 256 ranks, SGI Altix ICE
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Communication “Stiffness”
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Lowering the Stiffness

EM code performance on SGI Altix ICE
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MPInside : MPI function “branches” with “partner” cross 

references

•More about Received partners on next slide. 

MPInside report rank 0
MPI_FUNCTION  Brid Time(s) Self%  Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%  Rcv_W(s)

MPI_Recv #265     1.552 38.06  38.1       0     105       0  182972   0.0    1.552413
Ancestors: HPL_spreadT HPL_pdlaswp01T HPL_pdupdateTT HPL_pdgesv0 HPL_pdgesv HPL_pdtest
Partners_l_0:   240:#19:14.81:97.18 192:#15:8.91:95 .18 96:#15:8.82:95.42 32:#15:7.74:97.41 144:#19:6.5 3:93.12...
...........

MPI_FUNCTION  Brid Time(s) Self%  Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%
MPI_Send #19     0.125  3.06  90.0     102       0 1 370801       0   0.0

Ancestors: HPL_bcast_1rinM HPL_bcast HPL_pdgesv0 HPL _pdgesv HPL_pdtest main
...........

MPI_FUNCTION  Brid Time(s) Self%  Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%
MPI_Wait #524     0.983 24.10  62.2       0    1200       0       0   0.0

Ancestors: HPL_rollT HPL_pdlaswp01T HPL_pdupdateTT HP L_pdgesv0 HPL_pdgesv HPL_pdtest
Partners_l_0:   0:#273:100.00
...........

MPI_FUNCTION  Brid Time(s) Self%  Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%  Rcv_W(s)
MPI_Irecv #273     0.026  0.63  96.9       0    1200        0   70269   0.0    0.982906

Ancestors: HPL_rollT HPL_pdlaswp01T HPL_pdupdateTT HP L_pdgesv0 HPL_pdgesv HPL_pdtest
Partners_l_0:   240:#19:14.30:55.34 208:#19:10.93:5 6.13 224:#19:9.99:70.97 16:#19:7.91:73.19 160:#16:7 .75:48.53...
...........

Run:
setenv MPINSIDE_CALL_STACK_DEPTH 5
Setenv MPINSIDE_CROSS_REFENCE
mpirun –np xxx MPInside your_apps your_args
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MPInside :

MPI Receive function branch partners 

• Partner list format: CPU:#Branch:Wait:Send_late

CPU: Rank number that did an MPI Send/Isend for this branch:
#Branch: MPI_Send/Isend Branch ident(brid):
Wait: percent of this MPI_Recv that involved this “A” rank “#B” MPI Send/Isend

branch
Send_late: percent of this MPI_Recv where the corresponding Send was arriving 

late
For example: “240:#19:14.81:97.18” means:
This MPI_Recv branch was “partner” with the MPI_Send branch id 19 of CPU 240 and this 
partnership  is accountable for 14.81%  of this MPI_Recv branch communication time and 
97.18 % of this 14.81% was just wait because the sends were arriving late

MPI_FUNCTION  Brid Time(s) Self%  Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%  Rcv_W(s)
MPI_Recv #265     1.552 38.06  38.1       0     105       0  182972   0.0    1.552413

Ancestors: HPL_spreadT HPL_pdlaswp01T HPL_pdupdateTT HPL_pdgesv0 HPL_pdgesv HPL_pdtest
Partners_l_0:   240:#19:14.81:97.18 192:#15:8.91:95 .18 96:#15:8.82:95.42 32:#15:7.74:97.41 
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MPInside availability

� Basic profiling functionality is supported for SGI MPT, 

Intel MPI, HP MPI and ScaliMPI Platform MPI

– Open MPI support to be added soon.

� General modeling capabilities require detailed 

knowledge of the inner workings of the library

– Current support is for SGI MPT only.

� Perfect interconnect modeling is currently supported 

on all MPI supported. MPInside is available via 

SupportFolio
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Tools need MPI standardizations

� Performance tools are of great importance for parallel 
applications in particular for MPI applications.

� MPI Standard only provides the “PMPI” mechanism allowing 
easy wrapping of MPI functions
– Better than nothing but this is not much as wrapping is easy

� Advance profiling interfaces should be part of the standard:
– For notification to the tools about MPI internal library  events

• P2P collective transfers

• Operation delayed because of lack of buffers

• ..

– A mechanism to carry supplemental information that the tools may
wish to associate with user messages 

� Standard don’t want to impose a particular implementation 
but all the MPI work more or less the same. Based on this 
experience more attention should be given to MPI tools
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