
Application Performance Analysis with

SGI MPInside
Daniel Thomas, Jean-Pierre Panziera, John Baron

SGI Performance Engineering Team

2

Agenda

� MPI and MPInside overview

� Profiling capabilities

– Basic features

– Collective wait time evaluation

– Send late time

� Modeling capabilities

� Case study

� Availability

� Conclusion

3

How important is MPI for SGI

� The Message Passing Interface (MPI) standard

MPI is a library specification for message-passing, proposed as a standard by a broadly

based committee of vendors, implementers, and users.

� SGI is a major provider in the High Performance Processing (HPC) world with 20 machines in

the top500 faster computer in the world

A large majority of the flops executed with these

machines are executed by MPI applications

4

A general performance tool tradeoff

� What do we want to know with the tool
– Data about elements that are important for the MPI library developer may be

of little interest for the user that have no way to interact with such elements

� How to use the tool
– Use the binary the way it is or change it (recompile, relink, insert calls in the

source)

– How to fire up the tool

� What to gather
– Cumulative measurement stats

– Modeled results

– Traces

� What to report
– Raw data

• Need for powerful post-processing ?

– Pre-interpreted data

� Amount of resources to make it

5

MPInside Purpose

� To gain a better understanding of the interaction between application and MPI

library/interconnect network by diving “inside” the internals of each

Lammps standart Steps 200-1700 (measures)
ICE+ 256 CPU Nehalem-EP

0

2

4

6

8

10

12

14

16

18

20

0 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

MPI ranks

E
la

p
se

(s
)

allred

irecv

sdrv_S

send

waitany

sdrv_WS

sdrv_R

wait

Comput

�For the application developers to understand the consequence of their choices for exchanging

data

�For our performance engineering group that needs to commit on application performance

with future hardware

6

MPInside Design goals

� To require no re-compilation or re-linking.

� To use a simple command line interface.

� To be useable with thousands of ranks without overhead.

� To work without traces and without post-processing.
o This is a strong constraint that needs to use innovative and courageous

solutions

� To handle various communication models, in particular the perfect
interconnect (zero latency, infinite bandwidth).

� To produce simple text, easy to parse, raw output to be processed
with common scripting tools(awk,..) and a spreadsheet

� To be portable to any MPI library for its basic features.

� To support the full MPI 1.2 specifications and the MPI-2 one-sided
communications.

7

MPInside Basic Statistics

NPB CG, 256 ranks, SGI Altix ICE

0

20

40

60

80

100

120

140

160

180

200

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Compute init

wait send

irecv barrier

reduce overhead

mpirun –np NNN MPInside <cmd>

8

Collective Wait Time

setenv MPINSIDE_EVAL_COLLECTIVE_WAIT

A simple MPI_Barrier is inserted before the collective function assuming:

<Time collective> = <time to synchronize> + <time collective with fully
synchronized arrivals>

WRF 480 ranks + 32 IO ranks

0

200

400

600

800

1000

1200

1400

1600

1800

1 32 63 94 125 156 187 218 249 280 311 342 373 404 435 466 497

MPI ranks

E
la

p
se

(s
)

gatherV

gather

reduce

allred

scattV

bcast

irecv

isend

wait

Comput

9

Late Senders

setenv MPINSIDE_EVAL_SLT

Calculates per-rank times when sends were late for blocking MPI

functions(MPI_Recv, MPI_Wait,..)

10

Late Senders Time: How to capture it ?

�Have a synchronized clock (SGI Altix, UV, future ICE):

�A mechanism to send/recv a supplemental piece of information (at least the

send posting time) with the user buffer needs to be implemented

�Clocks are not synchronized and deviates (the casual situation on clusters)

�Use a stuttering method:

Send/recv fisrt a zero message size then the data

Time recv = Time Waiting send is posted + time transfer

Approximated as

Time to get zero message size + time to recv when send is surely posted

Only applicable with Bandwidth sensitive applications

�More on next slide

11

Stuttering method: Just look at my local

clock
Rank 0 Rank 1

1:MPI_Irecv(from 1,app tag) MPI_Irecv(from 0,app tag)

2:MPI_send(to 1) MPI_send(to 0)

3:MPI_Wait (recv) MPI_Wait(recv)

Stuterring method:

1a:MPI_Irecv(from 1, app tag) MPI_Irecv(app tag from 0)

2a:MPI_Isend(to 1,app tag) MPI_Isend(to 0,app tag)

2b:MPI_Isend(to 1,data,token tag) MPI_Isend(to 0,da ta,token tag)

2c:MPI_Wait (request 2a) MPI_Wait(request 2a)

2d:MPI_Wait (request 2b) MPI-Wait(request 2b)

3a:MPI-Wait(request 1a) MPI_Wait(request 1a)

3b:MPI_Recv(from 1, token tag) MPI_Recv(from 0,token tag)

-The 3a “zero

message” Time is

the “Send Late

Time”

-The 3b time is the

time of a transfer

with ready send

12

PARATEC Example

PARATEC 256 ranks, SGI Altix ICE

0

50

100

150

200

250

MPI ranks

E
la

p
se

d
 ti

m
e(

s)

allred
b_allred
wait
w_wait
Other MPI
Compute

Basic profiling

Send Late time and
Collective wait time
evaluation

13

Derived Statistics

Linpack 256 CPU on ICE

0

50

100

150

200

250

300

350

400
0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

MPI ranks

M
b

yt
es

/s actual Mb/s

Mb/s seen by the
application

14

MPInside Modeling

� Uses virtual clocks to perform on-the-fly “what if” experiments. Such
virtual clocks are incremented by the measured computational times and
by an evaluation of the communication times

� Communication model:

– T(size) = latency + size / bandwidth(size, network load)

� “Perfect” interconnect:

– latency = 0, bandwidth = ∞

15

MPInside Modeling continue

� As there is no standard mechanism in MPI for the library to

notify tools for internal event a deep knowledge of the MPI

library internals is necessary to handle collective function

properly. This is why modeling is restricted to the SGI MPI

library

� Perfect interconnect is an exception:

– For each collective operation all the virtual clocks are exchanged

between processors. The latter arrival imposes its clock. Then the

collective operation is perfect.

16

Perfect Interconnect Example

PARATEC 256 ranks, SGI Altix ICE

0

50

100

150

200

250

MPI ranks

E
la

p
se

d
 t

im
e(

s)

allred
wait
Other MPI
Compute

Basic profiling

Perfect interconnect

setenv MPINSIDE_MODEL PERFECT+1.0

PARATEC 256 ranks, SGI Altix ICE

0

50

100

150

200

250

MPI ranks

E
la

p
se

d
 ti

m
e(

s)

allred
b_allred
wait
w_wait
Other MPI
Compute

Basic profiling

Send Late time and
Collective wait time
evaluation

17

Case Study

SPEC MPI candidate code, 256 ranks, SGI Altix ICE

0

20

40

60

80

100

120

140

0 64 128 192 0 64 128 192

MPI rank

E
la

p
se

d
 t

im
e

(s
ec

)

Comput w_sdrv_R

sdrv_R b_bcast

bcast barrier

Other MPI

Perfect interconnectSLT + collective wait time

18

Communication “Stiffness”

0 5 10 15 20 25 30 35

1

2

3

4 comput

wait

send

0-1

0-1 1-2

1-2 2-3

2-3

0-1

0-1

1-2

1-2 2-3

2-3

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4 comput

wait

Send

Recv

0-1

0-1 1-2

0-2 2-3

0-3 3-4

3-4

2-5
5-6

1-6

stiffness 3/3 = 1

stiffness 6/2=3

Such information is carried in the supplemental piece of

information necessary for the Send Late Time evaluation

19

Lowering the Stiffness

EM code performance on SGI Altix ICE

0

5

10

15

20

25

30

35

0 256 512 768 1024 1280 1536 1792 2048
Number of ranks

S
ca

lin
g

 r
el

at
iv

e
to

 6
4

ra
n

ks Original, SendRecv, stiffness = 38

New, Isend / Irecv, stiffness = 2

20

MPInside : MPI function “branches” with “partner” cross

references

•More about Received partners on next slide.

MPInside report rank 0
MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss% Rcv_W(s)

MPI_Recv #265 1.552 38.06 38.1 0 105 0 182972 0.0 1.552413
Ancestors: HPL_spreadT HPL_pdlaswp01T HPL_pdupdateTT HPL_pdgesv0 HPL_pdgesv HPL_pdtest
Partners_l_0: 240:#19:14.81:97.18 192:#15:8.91:95 .18 96:#15:8.82:95.42 32:#15:7.74:97.41 144:#19:6.5 3:93.12...
...........

MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%
MPI_Send #19 0.125 3.06 90.0 102 0 1 370801 0 0.0

Ancestors: HPL_bcast_1rinM HPL_bcast HPL_pdgesv0 HPL _pdgesv HPL_pdtest main
...........

MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss%
MPI_Wait #524 0.983 24.10 62.2 0 1200 0 0 0.0

Ancestors: HPL_rollT HPL_pdlaswp01T HPL_pdupdateTT HP L_pdgesv0 HPL_pdgesv HPL_pdtest
Partners_l_0: 0:#273:100.00
...........

MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss% Rcv_W(s)
MPI_Irecv #273 0.026 0.63 96.9 0 1200 0 70269 0.0 0.982906

Ancestors: HPL_rollT HPL_pdlaswp01T HPL_pdupdateTT HP L_pdgesv0 HPL_pdgesv HPL_pdtest
Partners_l_0: 240:#19:14.30:55.34 208:#19:10.93:5 6.13 224:#19:9.99:70.97 16:#19:7.91:73.19 160:#16:7 .75:48.53...
...........

Run:
setenv MPINSIDE_CALL_STACK_DEPTH 5
Setenv MPINSIDE_CROSS_REFENCE
mpirun –np xxx MPInside your_apps your_args

21

MPInside :

MPI Receive function branch partners

• Partner list format: CPU:#Branch:Wait:Send_late

CPU: Rank number that did an MPI Send/Isend for this branch:
#Branch: MPI_Send/Isend Branch ident(brid):
Wait: percent of this MPI_Recv that involved this “A” rank “#B” MPI Send/Isend

branch
Send_late: percent of this MPI_Recv where the corresponding Send was arriving

late
For example: “240:#19:14.81:97.18” means:
This MPI_Recv branch was “partner” with the MPI_Send branch id 19 of CPU 240 and this
partnership is accountable for 14.81% of this MPI_Recv branch communication time and
97.18 % of this 14.81% was just wait because the sends were arriving late

MPI_FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_ R avr_szS avr_szR W_miss% Rcv_W(s)
MPI_Recv #265 1.552 38.06 38.1 0 105 0 182972 0.0 1.552413

Ancestors: HPL_spreadT HPL_pdlaswp01T HPL_pdupdateTT HPL_pdgesv0 HPL_pdgesv HPL_pdtest
Partners_l_0: 240:#19:14.81:97.18 192:#15:8.91:95 .18 96:#15:8.82:95.42 32:#15:7.74:97.41

22

MPInside availability

� Basic profiling functionality is supported for SGI MPT,

Intel MPI, HP MPI and ScaliMPI Platform MPI

– Open MPI support to be added soon.

� General modeling capabilities require detailed

knowledge of the inner workings of the library

– Current support is for SGI MPT only.

� Perfect interconnect modeling is currently supported

on all MPI supported. MPInside is available via

SupportFolio

23

Tools need MPI standardizations

� Performance tools are of great importance for parallel
applications in particular for MPI applications.

� MPI Standard only provides the “PMPI” mechanism allowing
easy wrapping of MPI functions
– Better than nothing but this is not much as wrapping is easy

� Advance profiling interfaces should be part of the standard:
– For notification to the tools about MPI internal library events

• P2P collective transfers

• Operation delayed because of lack of buffers

• ..

– A mechanism to carry supplemental information that the tools may
wish to associate with user messages

� Standard don’t want to impose a particular implementation
but all the MPI work more or less the same. Based on this
experience more attention should be given to MPI tools

24

