Resource Demand Modeling for Multi-Tier Services

Jerry Rolia¹, Amir Kalbasi, **Diwakar Krishnamurthy**³, Stephen Dawson² ¹: Automated Infrastructure Lab, HP Labs, Bristol, UK, e-mail: jerry.rolia@hp.com ²: SAP Research, CEC Belfast, UK, e-mail: firstname.lastname@sap.com ³: University of Calgary,Calgary, AB, Canada, e-mail: dkrishna@ucalgary.ca

© 2009 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Outline

- Motivation
- Related work
- Problem statement and methods
 - LSQ and LAD Regression
 - Demand Estimation with Confidence (DEC)
- Experimental case study
- Summary and conclusions

Motivation

- We consider Software as a Service (SaaS) environments
- SaaS permits scope for massive customizations
 - Different users can use different mixes of system functions
- Need to characterize performance of a customized workload
- We focus on resource demands of customized workloads
 Inputs for analytic models used for sizing/resource management
- Need techniques to accurately predict demands
 - Many possible customizations direct measurements infeasible
- Contribution Demand Estimation with Confidence (DEC)

(LABS[®]) RESEARCH

Related work

Linear regression

- Utilization and demands are linearly related (U=XD)
- Measure utilization and execution counts of system functions
- Get per-function demands predict for arbitrary function mixes
- Variants Least Squares (LSQ), Least Absolute Deviations (LAD)
- Queuing Network Model (QNM) based approaches
 - Assume a QNM and measured response times available for a mix
 - Estimate demands such that QNM R matches measured R
 - DEC intended when QNM and measured R not available
- How does DEC compare with LSQ and LAD?

Problem statement

Consider

- system with *M* functions and *R* resources
- finite number of benchmarks B₁....B_B
 - Benchmark Semantically correct sequence of requests
 - Examples TPC-W sessions, SAP SD benchmark
- Specified custom $mix F = F_1 \dots F_M$
 - *Fi is execution* count for *i*th function
- Estimate for the specified custom workload mix
 - demands $D_1 \dots D_R$ on R resources
 - confidence intervals for $D_1 \dots D_R$

LSQ method

- Execute benchmarks B₁....B_B
- When benchmarks are executing, for each resource
 - Measure busy time Y_i
 - Measure observed function counts $F_{1,I} \dots F_{M,I}$ for sampling period *i*
- Apply LSQ

$$\begin{split} Y_{i} &= D_{1}F_{1,i} + D_{2}F_{2,j} \cdots + D_{M}F_{M,i} + E_{i}, i = 1, 2, \cdots N \\ D_{i} &\geq 0, i = 1..N \\ O(D_{1}, \cdots D_{M}) &= \sum_{i} \left(Y_{i} - D_{1}F_{1,i} - D_{2}F_{2,i} \cdots - D_{M}F_{M,i}\right)^{2} \\ \widehat{Y} &= D_{1}F_{1} + D_{2}F_{2} \cdots + D_{M}F_{M} \end{split}$$

Inputs

Solve for per component demands

Estimate the overall demand for desired workload mix at resource

(LABS^{IN)}

LAD method

- LAD minimizes absolute error instead of sum square of errors
- More robust towards demand outliers

$$Y_{i} = D_{1}F_{1,i} + D_{2}F_{2,i} \cdots + D_{M}F_{M,i} + E_{i}, i = 1, 2, \cdots N$$
$$D_{i} \ge 0, i = 1..N$$
$$O(D_{1}, \cdots D_{M}) = \sum_{i} |Y_{i} - D_{1}F_{1,i} - D_{2}F_{2,i} \cdots - D_{M}F_{M,i}|$$
$$\hat{Y} = D_{1}F_{1} + D_{2}F_{2} \cdots + D_{M}F_{M}$$

LAD minimizes absolute error

Notes on LSQ and LAD

- Both techniques rely on a series of assumptions
 - Linear relationship between utilization and function counts
 - Function demands are deterministic
 - Errors normally distributed (LSQ);Laplacian distributed (LAD)
- Both techniques impacted by violation of assumptions
 - Poor demand estimates
 - Poor confidence interval estimates
- Both techniques can be impacted by *multicollinearity*
 - Execution counts of 2 or more functions are correlated
 - Observed in production systems (Pacifici et al, PEVA)
 - Can't distinguish per-function demands under correlations

DEC

- Predicts demands for joint use of functions
- Consider benchmarks $B_1 \dots B_B$ each with its own mix
- Measure mean resource demands of each benchmark

$$D^{B} = \begin{bmatrix} D_{11} & D_{12} & \dots & D_{1B} \\ D_{21} & D_{22} & \dots & D_{2B} \\ \vdots & \vdots & \dots & \vdots \\ D_{R1} & D_{R2} & \dots & D_{RB} \end{bmatrix}$$

- Express desired mix as linear combination *L* of a subset of benchmarks
 - Subset of *B*' benchmarks executed as per *L* yields same mix as desired mix
- Estimate demand as linear combination L of demands of B'

$$D^{B'} = \begin{bmatrix} D_{11} & D_{12} & \dots & D_{1B'} \\ D_{21} & D_{22} & \dots & D_{2B'} \\ \vdots & \vdots & \dots & \vdots \\ D_{R1} & D_{R2} & \dots & D_{RB'} \end{bmatrix}$$

where $B' \leq B$
$$D^{S} \approx D^{B'}L$$

Estimated demand
Estimated demand
Estimated demand
Estimated demand
Estimated demand

CALGARY

DEC – (cont'd)

Example – (system with 3 functions and 1 resource)

Desired mix = $[4 \ 1 \ 7]$ $B' \{B_3 = [2 \ 0 \ 3] B_7 = [0 \ 1 \ 0] B_8 = [0 \ 0 \ 1]\}$ $D^{B'} = [2 \ 5 \ 1]$

 $L = [2 \ 1 \ 1]^{\mathsf{T}} (2^* B_3 + 1^* B_7 + 1^* B_8)$ $D^S = D^{B'} L = 10$

We use an iterative approach that employs linear programming to determine *B*' and *L*

DEC VS Regression

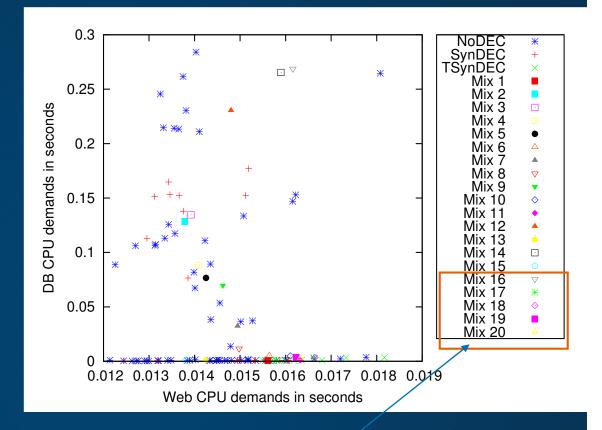
- Advantages
 - Insensitive to multicollinearity doesn't rely on per-function demands
 - More robust confidence interval calculations
 - Mean demand of benchmarks are normally distributed under central limit theorem (assuming large number of runs)
 - It follows linear combination of mean demands is also normally distributed
 - Can prepare a validation performance test from the combination L
 - Execute chosen benchmarks as per L validate demands or performance objectives of the customized workload
- Limitations
 - May not be always possible to realize exact match of mix
 - Non-unique multiple combinations possible for a given mix

SAP RESE

Case study

- 3-tier TPC-W system
- 100 benchmarks
- 120 "customized" mixes

- 1000x variation in D_{db}
- Compare DEC, LSQ, LAD for 120 mixes



Controlled mixes to study multicollinearity

(LABS^{he)} SAPRESEARCE

Results – cases with exact match Prediction errors for DB CPU demand (cases with exact match)

DEC 120 LSQ LAD 100 LSQ-NDEC Relative error in percentage LAD-NDEC 80 60 40 20 n 0.1 0.2 0.5 0.7 0.8 0.9 0 0.3 0.4 0.6 1 Percentiles

DEC outperforms LSQ and LAD

DEC achieved exact match of mix for 55 cases

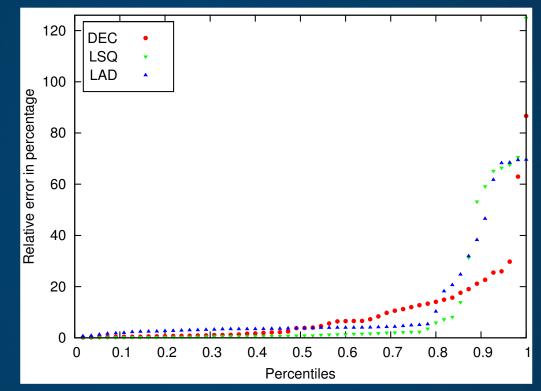
SAP RESEARCH

LABS

Results – all cases

Prediction errors for DB CPU demand (cases with non-exact matches

included)

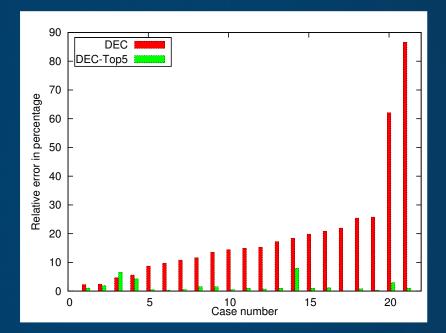


DEC predictions become less reliable

However, errors still comparable with those of LSQ and LAD

Results – exploiting flexibility of DEC to reduce errors

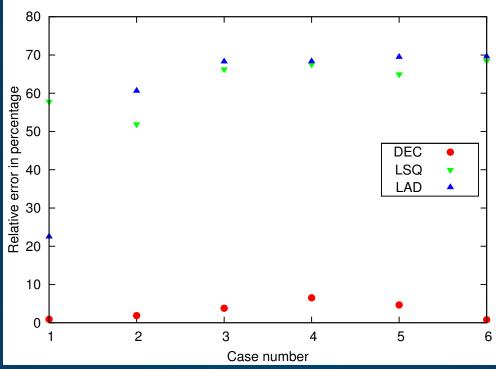
Prediction errors for DB CPU demand (non-exact cases)



DEC can be improved for non-exact cases by relaxing some constraints Modified LP formulation to match top 5 resource intensive functions exactly "Best effort" match for other functions DEC errors dropped significantly

Results - multicollinearity

Prediction errors for DB CPU demand for cases impacted by multicollinearity

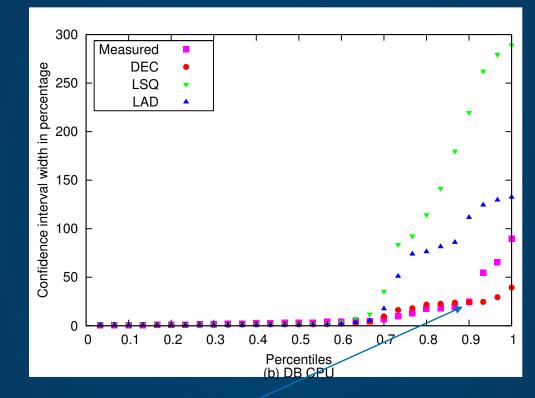


LSQ and LAD exhibit very high errors

DEC has significantly lower errors – it is not impacted by multicollinearity

Results – confidence intervals

Confidence interval width of mean demand predictions



DEC's CI predictions closely track CIs for measured demands

ALGAR

Summary and conclusions

- DEC provides an alternative to regression-based demand estimation
 - Accuracy compares favorably to regression
 - Supports more robust confidence interval calculations
 - Insensitive to multicollinearity
 - Provides a performance-test based validation for predictions
- Next steps
 - Validate on other systems
 - Study impact of service demand variability in a controlled manner
 - Automate handling of cases with non-exact matches
 - Consider systems whose demands for a given mix shift with time

