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A distributed economic solution: MaGoG

A world peer-to-peer
market

No central auctioneer

Messages are
forwarded by
neighbours, and a
copy remains in their
pubs

Every node has a
pub, a trading floor,
where deals are closed
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Spot price evolution

0 50000 100000 150000 200000

1
0

0
0

3
0

0
0

5
0

0
0

7
0

0
0

Time in Epochs

P
ri
c
e

Fernando Martinez, Peter Harrison, Uli Harder A Markovian Futures Market for Computing Power



Introduction Market model Simulation MDP Conclusion

Future contracts

Computing power is non-storable, and therefore non-tradeable

Future contract: agreement to buy/sell something at a future
date for a fixed price
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Future contracts

Futures allow to trade the underlying computing power

They extend the trading spectrum, allowing maximization of
the use of resources, as well as hedging and speculation

Fernando Martinez, Peter Harrison, Uli Harder A Markovian Futures Market for Computing Power



Introduction Market model Simulation MDP Conclusion

Future contracts

Financials and storable commodities have a relation between
the Spot price and the Future price: F (t, T ) = S(t)erT

t Present date

T Remaining time to maturity date

r Interest rate

Since computing power is non-storable: there is no direct
relation between the Spot price and the Future price

=⇒ Model future prices directly
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Future contracts

We consider the variation in price, rather than the price itself:

We limit the price variation at a particular time step by the
number of agents (finite)

Both positive and negative variations are allowed
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Future contracts

We introduce the concept of market pressure, which
determines the price variation of the market:
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Future contracts

The market is formed by its market participants
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We therefore specify the behaviour of each agent

Fernando Martinez, Peter Harrison, Uli Harder A Markovian Futures Market for Computing Power



Introduction Market model Simulation MDP Conclusion

Future contracts

Agents take Markovian decisions

Discrete-time Markov chain. Independent for each agent.

Three possible actions or states: {−1, 0, 1}

i
A Ti =





Ti (−1,−1) Ti (−1, 0) Ti (−1, 1)
Ti (0,−1) Ti (0, 0) Ti (0, 1)
Ti (1,−1) Ti (1, 0) Ti (1, 1)
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Future contracts

Agents trade future contracts of computing power for delivery
at an arbitrary future date

Agents submit ‘market orders’ with their intention to buy(1),
sell(-1) or hold(0) at the current market price
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Market model

The market state is the result of considering the individual
actions of all agents −→ 3N states!!

By using the concept of market pressure:
Market state = Sum of the individual states of the agents

Then the number of market states is reduced to 2N + 1
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Transition probability matrix of the market

M = (msd | −N ≤ s, d ≤ N),

M =

















P(−N,−N) . . . P(−N, 0) . . . P(−N, N)
...

...
...

P(0,−N) . . . P(0, 0) . . . P(0, N)
...

...
...

P(N,−N) . . . P(N, 0) . . . P(N, N)
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Transition probability matrix of the market

The global matrix is calculated via generating functions,
which use convolutions to generate all the states

Calculations are simplified when all agents are equal

Normally there will be a few groups of agents, each group
containing the same kind of agents
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Simulation

An ideal simulation setup with a fully connected network gives
the same results as the analytic model
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Simulation

For a non-ideal simulation setup (peer-to-peer), shifting and
scaling factors need to be found to design the architecture
accordingly
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Futures trading

Allow trading the underlying computing power

Maximise use of resources

Hedging

Speculation
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MDP

Markov Decision Processes are used for decision-making in
sequential, uncertain environments

The decision maker receives a reward depending on his chosen
action and the change in the system state
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MDP: States of the system

Si ,pos = (i , |i |, pos) with i , pos ∈ Z ∩ [−N , N ]

i Price variation: given by the transition probability
matrix of the market

|i | Trading volume: available to be bought or sold

pos Open position of the trader
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MDP: Actions of the trader

The trader can buy one future contract (1), sell one future
contract (-1) or hold his position (0) at every decision epoch

He is limited to have an open position between −N and N

The number of decision epochs is infinite
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MDP: Reward for the trader $

The trader receives a reward depending on his actions and the
evolution of the system

We specify a reward that consists of two parts

The first part is the profit/loss due to the trader’s position
and the price variation

r1(s, a) =
∑

j∈S

r1(s, a, j)p(j |s, a)

r1(s, a, j) = ij ∗ posj
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MDP: Reward for the trader $

The second part of the reward is a penalty for being unable to
liquidate the open position

r2(s, a) =
∑

j∈S

r2(s, a, j)p(j |s, a)

r2(s, a, j) = −c ∗ max(|posj | − |i |j , 0), c ∈ R
+

Total reward:

r(s, a) = r1(s, a) + r2(s, a)
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MDP: Optimal trading policy

Find an optimal trading policy

Infinite number of decision epochs −→ apply a discount factor
λ (0 ≤ λ < 1) that makes future rewards less valuable

Expected total present value of the reward:

vπ
λ (s) = Eπ

s {
∞

∑

t=1

λt−1r(Xt , Yt)}

=⇒ Find the policy π that maximizes this reward
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MDP: Optimal trading policy via Linear Programming

Easy formulation

Discounted Markov Decision problem =⇒ Linear
Programming problem
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MDP: Optimal trading policy via Linear Programming

choosing α(j), j ∈ S (being S the state space of the MDP) to
be positive scalars with

∑

j∈S

α(j) = 1

The dual linear program consists of maximizing:

∑

s∈S

∑

a∈Acs

r(s, a)x(s, a)

subject to:

∑

a∈Acj

x(j , a) −
∑

s∈S

∑

a∈Acs

λp(j |s, a)x(s, a) = α(j)

and x(s, a) ≥ 0 for a ∈ Acs and s ∈ S .
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MDP: Optimal trading policy via Linear Programming

Solving the dual ≡ finding the x(s, a)

We then obtain a decision rule for each state by choosing the
action that gives the highest probability:

P{dx(s) = a} =
x(s, a)

∑

a′∈Acs

x(s, a′)

The set of the decision rules for each state of the MDP forms
the policy
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MDP: Example

T1 =





0.3 0.4 0.3
0.3 0.4 0.3
0.3 0.4 0.3



 T2 =





0.4 0.3 0.3
0.4 0.2 0.4
0.3 0.4 0.3





M =













0.120000 0.250000 0.330000 0.210000 0.090000
0.120000 0.238533 0.326178 0.213822 0.101467
0.111000 0.236000 0.329333 0.222667 0.101000
0.102222 0.231852 0.331852 0.231852 0.102222
0.090000 0.240000 0.340000 0.240000 0.090000













Si ,pos = (i , |i |, pos), for i , pos ∈ Z ∩ [−2, 2]

Acs = {−1, 0, 1}, for s ∈ S
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MDP: Example

Penaly factor c = 0.1

Discount factor λ = 0.95

The dual is solved with GLPK (GNU Linear Programming
Kit), using the same value for all the α(j)

In particular, the standard LP solver of GLPK, glpsol, is used,
and an optimal solution is found by the simplex method
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MDP: Example

Optimal policy: trader’s optimal action for each state of the
MDP

S0,−2 1 S2,−2 0 S−1,−2 0
S0,−1 -1 S2,−1 -1 S−1,−1 -1
S0,0 -1 S2,0 -1 S−1,0 1
S0,1 -1 S2,1 -1 S−1,1 -1
S0,2 -1 S2,2 -1 S−1,2 -1
S1,−2 0 S−2,−2 1
S1,−1 -1 S−2,−1 -1
S1,0 -1 S−2,0 1
S1,1 -1 S−2,1 0
S1,2 -1 S−2,2 -1
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Conclusion

World market for computing power

Markov character of the agents. Reduced state space of the
market by using market pressure

Trading of future contracts of computing power. Optimal
policy for MDP

Further work will consider implementation on a peer-to-peer
network

And agents with variable behaviour depending on their
neighbours
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Thank you
{fermaror@doc.ic.ac.uk}
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