

SLA-Driven Planning and Optimization of Enterprise Applications

H. Li¹, G. Casale², T. Ellahi²

¹ SAP Research, Karlsruhe, Germany ² SAP Research, Belfast, UK

Presenter: Giuliano Casale

WOSP/SIPEW Conference San Jose, Jan 29th, 2010

Sizing enterprise applications

- Capacity planning
 - Periodic scalability assessment
 - Focus on performance and costs
- Service Level Agreements (SLAs)
 - Constraints on responsiveness (throughput, resp. time, ...)
- Total Cost of Ownership (TCO)
 - HW provisioning
 - SW upgrades
 - Infrastructure management
 - Power consumption

Motivation: SaaS & Sizing

Software-as-a-Service (SaaS) increasingly more popular

Strong need for sizing frameworks

Contributions to Sizing

- Performance model of a commercial enterprise application
 - SAP ERP
- Hardware cost model
 - Benchmark-driven approach
- Power consumption cost model
 - Measurement-driven model
- Multi-objective optimization approach to sizing
 - How to simultaneously minimize cost and response time

Performance Modeling

SAP ERP

- ERP: management of business processes and resources
- Workload complexity
 - Sizing based on reference workloads, e.g., sales transact.
- Performance models
 - Commercial application (not a toy system)
 - ERP has 10 times the lines of code of the Windows operating system
 - Can we define models that are both simple and effective?

End-to-end Performance

Performance Model

- Limited literature on ERP modeling
 - Rolia et al., ROSSA 2009 layered queueing model (LQM)
- Queueing networks with finite capacity regions (FCRs)
 - FCR = admission control region
 - More general than MVA queueing networks
 - Less expressive than LQMs (e.g., no async behavior)
- Why FCR queueing networks?
 - Simplest models with admission control
 - Promising for analytical approximations
 - multiclass iterative approximations already available

Performance Model

- FCR queueing network of SAP ERP
 - Performance evaluated with Java Modelling Tools (JMT) simulator

Prediction Accuracy

- Comparison of model and measurement
 - Over-sizing needed when #WPs close to #CPUs
 - Best performance when #WPs much larger than #CPUs

			R	R	U	U
vCPU	WP	usrs	(Model)	(Meas.)	(Model)	(Meas.)
2	1	300	25.86	28.76	0.30	0.51
2	2	300	9.15	9.32	0.56	0.65
2	4	300	3.57	7.62	0.79	0.66
2	8	300	1.76	2.41	0.92	0.86
2	16	300	• 1.11	1.37	0.97	0.97
2	32	300	1.05	0.91	0.98	0.99
4	1	300	25.68	26.8	0.15	0.28
4	2	300	9.19	10.6	0.28	0.37
4	4	300	1.61	1.67	0.46	0.51
4	8	300	0.47	1.16	0.52	0.65
4	16	300	0.41	0.43	0.53	0.63
4	32	300	0 .37	0.38	0.53	0.62

Cost Modeling

Modeling Hosting Costs

- Focus on technical components of TCO
 - ■Goal: find relation between service demand and costs
- Hardware costs
 - Parallelism (#cores/CPU)
 - Price (price/core)
- Usage costs
 - Power consumption
- Service demand
 - Nominal performance (tpmC/core: TPC-C results)

Cost vs Performance

- Publicly available data for Intel Xeon DP/MP
- Tested polynomial, exponential, and power laws
 - Best RSS for power law: $f(x) = c_1 x^{c_2} + c_3$

Cost vs Performance vs Cores

Cost/CPU: $C_{cpu} = N_{core}C_{core}$

Cost/core: $C_{core} = c_1 T_{core}^{c_2} + c_3 N_{core}^{c_4} + c_5$

model param.	c_1	c_2	C3	C4	C5
TPCC/DP	36	2.0	261	-0.9	-105

Modeling Power Consumption

Focus on hardware costs and power consumption

Normalized power:

$$P_{norm} = \frac{P_{sys} - P_{idle}}{P_{busy} - P_{idle}}$$

Butterworth-type law:

$$h(U) = c_1 U^{c_2} + c_3 U^{c_4} + c_5,$$

 $P_{norm}(U) = 1 - h(U)^{-1}$

Final server cost model

$$\begin{aligned} Cost(T_{core}, N_{core}, U, I) = \\ p_0 + p_1 C_{cpu} + p_2 \int_{\text{power.}} P_{sys}(U(t)) dt, \\ \text{static hw} & \text{power.} \\ \text{costs costs} & \text{costs} \end{aligned}$$

Traditional data center

Cost model (fix-cost : operation-cost = 7:3)

2 0

2.79

Performance per core

2.25

Consolidated data center

0.8

0.6

System utilization

0.4

0.2

Sizing Framework

Pareto Front

Optimization variables

- Variables: service demands, #cores, software threading lvl
- Objective functions: min Cost, min Response Time

Pareto improvement

■ improve one variable without making any other worse

Pareto-optimal point

- no feasible improvements
- Pareto front

source: wikipedia

SLA Planning Framework

Pareto Front: Results

Consolidated data center scenario

Pareto Front: Results

Traditional data center scenario

Solution Space: Results

Conclusion

- Quantitative techniques for (semi-)automatic sizing
 - Queueing-theoretic performance model
 - ■TCO models
 - Multi-objective optimization for decision making

Future work

- Generalization of methodology to arbitrary application
- Development of analytical approximations for FCR models
- Validation of power models for ERP applications

Thanks!

g.casale@imperial.ac.uk