Reducing Performance Non-determinism via Cache-aware Page Allocation Strategies

Michal Hocko, Tomas Kalibera

Distributed Systems Research Group

http://dsrg.mff.cuni.cz

Department of Software Engineering

Charles University in Prague

Faculty of Mathematics and Physics

Czech Republic

Performance Non-determinism

Non-determinism in execution is particuarly bad for benchmarking

Sample Benchmark Structure

```
Main() {
  initialize();
  warm-up();
  for (i=0; i < nmeasurements, i++) {</pre>
    before = getCurrentTime();
    doOperation();
                                       One measurement
    after = getCurrentTime();
    results[i] = after - before;
  print(results);
Cmd-line> ./benchmark
Cmd-line> ./benchmark
                                       One execution
Cmd-line> ./benchmark
```

Non-Determinism in Measurement and Execution

Non-Determinism in Measurement and Execution

Non-Determinism in Measurement and Execution

Non-determinism in Execution is Costly

```
Main() {
                                       Repeated with every
  initialize();
                                       execution
  warm-up();
  for (i=0; i < nmeasurements, i++) =</pre>
    before = getCurrentTime();
                                       One measurement
    doOperation();
    after = getCurrentTime();
    results[i] = after - before;
  print(results);
Cmd-line> ./benchmark
                                       One execution
Cmd-line> ./benchmark
Cmd-line> ./benchmark
```

Non-determinism in execution is caused by cache & virtual memory

Application Memory Layout (Linux)

Tomas Kalibera WOSP/SIPEW 2010

Virtual memory

Program code Initialized data Non-initialized data Heap

Stack
Cmd-line arguments
Environment

Low virtual addresses

High virtual addresses

Cache and Addressing on Typical System

Page/Cache Color

- Operating system assigns colors to pages
- Data from pages of different colors do not collide in the cache

Could a cache-aware strategy for selecting page colors reduce non-determinism in execution?

Good Old Cache-aware Strategies

Tomas Kalibera WOSP/SIPEW 2010

Page Coloring

- Heuristic for "spatial locality"
- Adjacent pages have different color do not collide
- Solaris, Windows, Free BSD

Bin Hopping

- Heuristic for "temporal locality"
- Pages first accessed in sequence have different color
- Digital Unix
- No Support in Linux

Our Contribution

- Linux Kernel extension for strategies
 - Supports bin hopping and page coloring as modules
 - Supports more: other strategies, application layer control, etc
- Large empirical study in Linux
 - 4500 benchmark experiments
 - Evaluation based on statistical methods

Benchmarks

- Mono (C#)
 - SciMark2 FFT (numerical)
 - TCP/HTTP Ping (remote communication)
 - Rijndael (cryptography)
- SciMark2 (C, numerical)
 - FFT, Matrix Factorization, Monte Carlo, ...
- Csibe (C/C++)
 - JPEG (multimedia compression)
 - GZIP, BZIP2, PNG (lossless compression)
 - Lexical analysis, abstract machine simulator, ...

Evaluation Methodology

- Executed about 4500 experiments
- Question for evaluation:
 - "Does page coloring or bin hopping provide lower response time/non-determinism than the default kernel strategy?"
- Metrics
 - Mean response time, impact factor of nondeterminism
- Quantitative Summary
- Qualitative Summary

Non-det. in Execution: Quantitative Summary

Summary

- Response time
 - Cache-aware strategies don't help
 - Page coloring performs like default, bin hopping is sometimes slightly slower
- Non-determinism
 - Cache-aware strategies reduce non-determinism
 - Bin hopping sometimes reduces a bit more than page coloring
- Our kernel extension allows to select a strategy on application basis