
Towards the Identification of "Guilty" 

Performance Antipatterns

The problem of interpreting the results of software performance analysis is very critical. Software developers expect 

feedback in terms of architectural design alternatives (e.g., re-deploy a component), whereas the results of 

performance analysis are pure numbers. Support to the interpretation of such results that helps to fill the gap between 

numbers and software alternatives is still lacking. Performance antipatterns can play a key role in the search of 

performance problems and in the formulation of their solutions. 

In this poster, we introduce a process to elaborate the analysis results and to score performance requirements, model 

entities and guilty performance antipatterns. We illustrate the process with exemplary values.
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Related Work

Xu et al.[4] present a semi-automated approach to find 

configuration and design improvement on the performance 

model level based on LQN models. 

Parsons et al. [3] present a framework for detecting 

performance anti-patterns in Java EE architectures. The 

method requires an implementation of a component-based 

system, which can be monitored for performance properties. 

Diaz Pace et al. [2] have developed the ArchE framework. 

ArchE assists the software architect during the design to 

create architectures that meet quality requirements. It helps to 

create architectural models and suggests improvements.

A more detailed presentation of this work can be found in [1].

References

[1] V. Cortellessa, A. Martens, R. Reussner and C. Trubiani. A Process to 

Effectively Identify "Guilty" Performance Antipatterns. In Proc. of Fundamental 

Approaches to Software Engineering (FASE’10), to appear.

[2] A. Díaz Pace, H. Kim, L. Bass, P. Bianco, and F. Bachmann. Integrating 

quality-attribute reasoning frameworks in the ArchE design assistant. In S. 

Becker, F. Plasil, and R. Reussner, editors, Proc. of 4th International Conference 

on the Quality of Software-Architectures (QoSA'08), volume 5281 of LNCS, pages 

171--188. Springer, 2008.

[3] T. Parsons and J. Murphy. Detecting performance antipatterns in component 

based enterprise systems. Journal of Object Technology, 7(3):55--90, 2008.

[4] J. Xu. Rule-based automatic software performance diagnosis and 

improvement. In Proc. of the 7th International Workshop on Software and 

Performance (WOSP'08), pages 1--12, New York, NY, USA, 2008. ACM.

Input: Requirements:

R1: RT(report) < 2.5 sec
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R1 R2

PA1 0.3 0.15

PA2 0.2 0.1

PA3 0.05 0.03
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