
Towards the Identification of "Guilty" 

Performance Antipatterns

The problem of interpreting the results of software performance analysis is very critical. Software developers expect 

feedback in terms of architectural design alternatives (e.g., re-deploy a component), whereas the results of 

performance analysis are pure numbers. Support to the interpretation of such results that helps to fill the gap between 

numbers and software alternatives is still lacking. Performance antipatterns can play a key role in the search of 

performance problems and in the formulation of their solutions. 

In this poster, we introduce a process to elaborate the analysis results and to score performance requirements, model 

entities and guilty performance antipatterns. We illustrate the process with exemplary values.

Vittorio Cortellessa, Anne Martens, Ralf Reussner, Catia Trubiani

Institute for Programme Structure

and Data Organisation

Software Design and Quality Group

Am Fasanengarten 5

Karlsruhe, Germany

www.sdq.ipd.kit..edu
Via Vetoio 1, 67010 Coppito, L’Aquila, Italy 

www.di.univaq.it

Keywords: Performance Prediction, 

Software Architecture, Antipatterns

Related Work

Xu et al.[4] present a semi-automated approach to find 

configuration and design improvement on the performance 

model level based on LQN models. 

Parsons et al. [3] present a framework for detecting 

performance anti-patterns in Java EE architectures. The 

method requires an implementation of a component-based 

system, which can be monitored for performance properties. 

Diaz Pace et al. [2] have developed the ArchE framework. 

ArchE assists the software architect during the design to 

create architectures that meet quality requirements. It helps to 

create architectural models and suggests improvements.

A more detailed presentation of this work can be found in [1].

References

[1] V. Cortellessa, A. Martens, R. Reussner and C. Trubiani. A Process to 

Effectively Identify "Guilty" Performance Antipatterns. In Proc. of Fundamental 

Approaches to Software Engineering (FASE’10), to appear.

[2] A. Díaz Pace, H. Kim, L. Bass, P. Bianco, and F. Bachmann. Integrating 

quality-attribute reasoning frameworks in the ArchE design assistant. In S. 

Becker, F. Plasil, and R. Reussner, editors, Proc. of 4th International Conference 

on the Quality of Software-Architectures (QoSA'08), volume 5281 of LNCS, pages 

171--188. Springer, 2008.

[3] T. Parsons and J. Murphy. Detecting performance antipatterns in component 

based enterprise systems. Journal of Object Technology, 7(3):55--90, 2008.

[4] J. Xu. Rule-based automatic software performance diagnosis and 

improvement. In Proc. of the 7th International Workshop on Software and 

Performance (WOSP'08), pages 1--12, New York, NY, USA, 2008. ACM.

Input: Requirements:

R1: RT(report) < 2.5 sec

R2: util(Proc1) < 80%

R3: RT(maintain) < 3 sec

Scheduler

Graphic ` 

Reporting

Online 

Reporting

User

Mgmt
Webserver

report
maintain

Proc1 Proc2

Scheduler

Graphic ` 

Reporting

Online 

Reporting
PA4: Empty Semi 

Trucks

PA3: Blob

PA2: Extensive 

Processing

PA1: Concurrent Processing Systems

User

Mgmt
Webserver

report
maintain

Proc1 Proc2

Involved entities shown in blue

Scheduler

Graphic ` 

Reporting

Online 

Reporting

PA3: BlobPA1: Concurrent Processing Systems

User

Mgmt
Webserver

report
maintain

Proc1 Proc2

PA4: Deleted as not 

involved

p
PA2: Extensive 

Processing

Ranked Antipatterns List:

R1 R2

PA1 0.3 0.15

PA2 0.2 0.1

PA3 0.05 0.03

Apply most

promising 

solution

Scheduler

Graphic ` 

Reporting

Online 

Reporting

User

Mgmt
Webserver

Report: 4.55 sec Maintain: 

2.5 sec

Proc1 Proc2 Input: Antipattern Rules:
If util(Sx) > 
3∙util(Sy) then
Concurrent Processing 
Systems
(simplified example)

Scheduler

Graphic ` 

Reporting

Online 

Reporting
User

Mgmt

Webserver

Report: 2.86 sec
maintain

Proc1 Proc2

Performance 

analysis

Rule engine

matching

Calculate a score 

for antipatterns

Filter antipatterns

that do not affect

any requirement

Input: Software System Model

Annotated Software System Model

Complete Antipatterns List with Involved Entities

Filtered Antipatterns List

New Software System Model

Violated Requirements with

Involved Entities

R1: Webserver, Proc1, Scheduler, 

GraphicReporting, Proc2

R2: Webserver, Proc1


