
Workload Characterization
of SPECweb2005

Rema Hariharan and Ning Sun

Sun Microsystems

As the diversity of computer applications

increases, so does the need to come up

with newer benchmarks. Moreover, as the

usage characteristics of applications

change, it becomes necessary to update

the relevant benchmarks to reflect these

characteristics in the benchmarks

appropriately. SPECweb96 was the first

web benchmark based on the

characteristics of ISPs that downloaded

only static pages. This was replaced with

SPECweb99 in 1999. The main difference

between SPECweb96 (see [1]) and

SPECweb99 (see [2]) was the inclusion

of simple dynamic pages in SPECweb99.

While this was a major step forward, the

standard web benchmark still suffered

from several shortcomings (see [3] for a

discussion and analysis), from a customer

benchmarking point of view, the main one

being that SPECweb99 did not include

SSL based requests. With this in mind,

SPECweb99_SSL was created by adding

an SSL envelope around SPECweb99 (for

details, see [4]). Together, the two

benchmarks served the community for

more than three years. However, it was

clear that the benchmarks did not

represent any real world web workload.

The effort towards SPECweb2005 was

focussed on representing specific web

workloads with a hope to replicate and

represent the individual characteristics

from real world applications in this

benchmark. Unlike its predecessors which

were based on request models for files,

SPECweb2005 is based on downloading

pages, which are dynamically created

files, followed by requests for embedded

images within the files, with the page

download considered as being complete

when the dynamic page as well as all the

embedded files are downloaded.

Currently, this benchmark includes three

different workloads:

• Banking, which is fully SSL based

workload

• Ecommerce workload, which includes

both SSL as well as non-SSL requests.

• Support workload, which is based fully

on http requests and includes the

download of really large files.

The goal of this paper is to summarize the

characteristics of this benchmark, critique

it to a limited extent and to present a basis

for further commentaries and comparisons

which could pave way to the improvement

of the benchmark as technology changes

and new usage patterns emerge.

Characteristics of Banking
workload
This workload is based on internet

personal banking. Each individual logs

into the system and checks for their

account status, followed by either bill

payment, transfer of money between

accounts, or changing their personal

profile. Operations include both Post and

GET operations. The system maintains a

user session id for each user that logs in.

About 20% of the incoming users do not

logout, letting the session time out. Each

request session consists of processing a

dynamic request followed by requests for

several static images. The static image

requests are a function of the page

requested. Some of the static requests are

returned with a “304” response. The

dynamic request is first sent over a TCP

connection, then another TCP connection

is initiated for requesting the static files.

The static files are thus requested over the

two TCP connections. The second TCP

connection uses the same SSL session as

the first one. The SSL session is reused

for all subsequent requests within the

session, until the user logs off or abandons

the session. After each page request, the

user thread goes through a Think Time,

which averages about 9.98 sec.

We will now present some of the

workload characteristics that are derived

from the workload design.

We refer to the main metric for this

workload as SPECweb2005_Banking.

This is the number of simultaneous active

user threads supported while running the

workload. We will refer to each page

request operation as SW2005_Op. So,

each SW2005_OP will include one or

more http ops involving dynamic

processing followed by a number of http

static file requests.

• Average number of SW2005_Ops in a

login session = 4.6 (derived from the

Markov chain for the workload).

• Number of TCP connections made per

login session = 2

• Number of Page requests per TCP

connection = 2.3

• Average number of HTTP requests per

SW2005_Op = 12 (average derived

from design parameters)

• So, the average number of HTTP

requests per TCP connection = 12*2.3

= 27.6.

Using the Think Time value, average

response interval seen from the system at

peak load conditions, and the probability

for the only state that does generate three

page requests (for details, please see [5]),

we can compute the average number of

SW2005_Ops/s for each user session

supported to be approximately 0.149.

Thus, for every 1000 user sessions

supported (SPECweb2005_Banking value

of 1000), we get 149 SW2005_Ops/sec.

When the first user logs in, there is a full

SSL handshake over the first TCP

connection opened. The second TCP

connection opened reuses the SSL session

from the first one. In steady state, 21.47%

of all requests are logins. Therefore, we

get 32 full handshakes (149*0.2147) for

every 1000 user sessions supported.

There are 2 TCP handshakes (accepts) for

every user session. Given that there are an

average of about 4.6 page requests per

user session, 43.47% (2/4.6) of all

SW2005_Ops will initiate a new TCP

connection. As explained above, we have

149 SW2005_Ops/sec for every 1000

SPECWeb2005_Banking user sessions

supported, so this will result in a total of

65 TCP accepts/sec for every 1000

SPECweb2005_Banking.

Each SW2005_OP results in an average

page size of 30.4 KB. Given 4.6

SW2005_OPs per user session, over an

average interval of 30.9 sec (computed

using the average Think Time, and

average response interval), we get 0.1488

SW2005_Ops/sec per

SPECweb2005_Banking session

supported. This is equivalent to 4.52

KB/sec of Outgoing bytes per

SPECweb2005_Banking session. For a

score of 1000 SPECweb2005_Banking,

this translates to 36 Mb/s of outgoing

traffic from SUT to client.

The SUT also sends requests to the

BackEnd Simulator (BeSim) and receives

responses back. The following diagram

shows the relative sizes of byte traffic

between the client, SUT and the BeSim.

These values are based on the

measurements collected on our testbeds.

Figure 1Network IO for Banking workload

Summary
characteristic

Value

SW2005_Op/sec
per 1000
SPECweb2005_Ba
nking user sessions

149

HTTP- ops/s per
1000
SPECweb2005_Ba
nking user sessions

1788 (=149*12)

SSL full
handshakes/s per
1000
SPECweb2005_Ba
nking user sessions

32

SSL resumed
handshakes/sec per
1000
SPECweb2005_Ba
nking user sessions.

32

TCP accepts/sec
per 1000
SPECweb2005_Ba
nking user sessions

65

Client to SUT
traffic/sec per 1000
SPECweb2005_Ba
nking user sessions

4 Mb/s

SUT to client
traffic/sec per 1000
SPECweb2005_Ba
nking user sessions

36 Mb/s

SUT to BeSim
traffic/sec per 1000
SPECweb2005_Ba
nking user sessions

0.796 Mb/s

BeSim to SUT
traffic/sec per 1000
SPECweb2005_Ba
nking user sessions

0.377 Mb/s

Average bytes/Pkt
(Client to SUT) 138 Bytes

Summary
characteristic

Value

Average bytes/pkt
SUT to client 705 Bytes

Average bytes/pkt
SUT to BeSim 517 Bytes

Average bytes/pkt
BeSim to SUT 128 Bytes

Table 1: Banking workload characteristics

Other Characteristics and
Recommendation
The only images that scale with the

workload are the customer check images.

The workload scaling is mostly limited by

CPU power. Memory and disk usage is

not as heavy for this workload. Given that

the resource usage characteristics are very

platform dependent, we do not present

these characteristics in this paper.

As the workload is scaled, BeSim is likely

to present a bottleneck. The next release

of the benchmark is expected to address

this issue.

Characteristics of the
Ecommerce Workload

The Ecommerce workload is based on the

workload characteristics of a site that sells

computers and related accessories. Part of

this workload uses plain http based

requests, while the other part uses https

based requests. A customer visiting the

site passes through three distinct phases.

The first phase is when the customer

browses the website, looking for a

product. This phase involves searches and

browsing activity over product web pages,

all of which are dynamically created. The

second phase is the customization phase,

where the user customizes the product.

Finally, if the customer wants to check-

out/buy the product, then she/he does that

using SSL based requests. The workload

uses 11 distinct scripts. As in the case of

Banking workload, the transition between

states is driven via a Markov Chain. Each

page request (dynamic) is accompanied by

a bunch of static requests for embedded

images, including page images and

product images. The product images are

scaled with the benchmark.

From the benchmark design, we can

compute the average number of

SW2005_Ops for each incoming user

session to be 8.8 and the number of http-

ops per SW2005_OP as 17. As in the case

of Banking workload, the http requests for

each session uses 2 TCP connections.

Using an average of 9.98 sec + 2 sec (for

average response time under heavy load,

since 3 sec is the QOS limit for

Time_Good [5][6]) between subsequent

SW2005_OP, we can estimate the

SW2005_Ops/sec for each user session

supported as 0.093. Thus, for every 1000

sessions supported, we can expect to see

93.7 SW2005_OPs/sec and a

corresponding 1580 HTTP ops/s.

Unlike in the case of the Banking

workload, only a fraction of the user

sessions enter the SSL stage. The fraction

of the sessions that enter the checkout

stage is about 2/3 (computed from the

design Markov Chain). For each session,

from start until exit, there will be exactly

one full SSL handshake and one partial

SSL handshake. Each user session

involves 2 TCP connections if it does not

enter the check out stage and 4 TCP

connections if it enters the checkout stage.

Using the above along with the

information for average think-time and

number of SW2005_Ops/user session, we

can estimate the average the number of

TCP connections/sec for every 1000

SPECweb2005_Ecom supported as 35.

The following table summarizes these

characteristics:

Characteristic Value
SW2005_OPs/sec
per 1000
SPECweb2005_Ec
om 93
HTTP-OP/sec per
1000
SPECweb2005_Ec
om 1580
SSL full
handshakes/sec per
1000
SPECweb2005_Ec
om 17
SSL resumed
handshakes/sec per
1000
SPECweb2005_Ec
om 17
TCP accepts/sec
per 1000
SPECweb2005_Ec
om 35
Client to SUT
traffic/sec per 1000
SPECweb2005_Ec
om

3.7 Mb/s

SUT to client
traffic/sec per 1000
SPEweb2005_Eco
m

104 Mb/s

Characteristic Value
SUT to BeSim
traffic/sec per 1000
SPECweb2005_Ec
om

0.247 Mb/s

BeSim to SUT
traffic/sec per 1000
SPECweb2005_Ec
om

1.61 Mb/s

Average bytes/pkt
(Client to SUT)

84 Bytes

Average bytes/pkt
(SUT to Client)

1190 Bytes

Average bytes/pkt
(SUT to BeSim)

128 Bytes

Average bytes/pkt
(BeSim to SUT)

986 Bytes

Table 2: Ecommerce workload Characteristics

Other Characteristics and
recommendations

In this workload, the product images scale

linearly as the workload is scaled. Given

that the IO needs for this workload are

higher than those for Banking, memory

and Disk IO play a significant role on the

performance of this workload. Moreover,

the bytes exchanged with the BeSim

server and the number of BeSim queries

for this workload are much higher than for

the Banking workload. Given this, the

BeSim scaling change is most important

for this workload.

Figure 2Network IO for Ecommerce

Characteristics of the
Support Workload
The support workload was developed

based on the characteristics seen in sites

that were used to download upgrade and

fix related patches for computer support.

Typically, these downloads are very very

large and the intent of this workload is to

stress the IO and network IO. This

workload does not use SSL. The user

emulated in this workload, enters the

system, searches for the right patch file to

download, and then proceeds to download

the file. The maximum size of the file

downloaded is 35 MB. While the QOS for

all other pages is based upon the total

response interval seen, the QOS for the

patch download page is based only on the

throughput. 95% of the downloads are

expected to meet a minimum bit-rate of

100 kb/s, and 99% are expected to meet a

bit rate of 95 Kb/s. Also, the Think Time

values used for this workload are about

half as much as those for the other two

workloads (5 seconds by design, 5.1

seconds in the implemented version).

From the design parameters, we can

estimate the average number of page

requests that an incoming user will make

as 14.5. With an average Think Time

value of 5 sec between requests, and

response time of about 1 sec for all

requests except the one for the download

file, and an average response time for the

download file at about 68 seconds

(measured), the cycle time comes to about

150 sec. Equivalently, dividing the cycle

over 2 TCP connection requests, we get an

average of 13 TCP connection

requests/second, for each user emulated.

The following table summarizes some of

the characteristics of this workload:

Characteristic Value
SW2005_OPs/sec
per 1000
SPECweb2005_Su
pport

97
SW2005_Ops/sec

HTTP-Ops/sec per
1000
SPECweb2005_Su
pport

2044 HTTP ops/sec

SSL full
handshakes/sec per
1000 user sessions

N/A

SSL resumed
handshakes/sec per
1000 user sessions

N/A

Figure 3Network IO for Support workload

Characteristic Value
TCP accepts/sec
per 1000 user
sessions 13
Client to SUT
traffic/sec per 1000
user sessions

10 Mb/s

SUT to Client
traffic/sec per 1000
user sessions

464 Mb/s

SUT to BeSim
traffic/sec per 1000
user sessions

0.27 Mb/s

BeSim to SUT
traffic/sec per 1000
user sessions

1.0 Mb/s

Average bytes/pkt
(client to SUT)

79 bytes/pkt

Average bytes/pkt
(SUT to client)

1341 bytes/pkt

Average bytes/pkt
(SUT to BeSim)

126 bytes/pkt

Average bytes/pkt
(BeSim to SUT)

806 bytes/pkt

Average Mbps for
every 1000
connections
supported (SUT-
client)

464 Mbps

Table 3: Support workload Characteristics

Other Characteristics and
Comments
This workload is highly IO intensive. The

workload performance is significantly

influenced by the Zipf parameter used.

Currently the benchmark uses a Zipf

parameter of 1.2. The effect of this

parameter is to determine the access

pattern among the files. The higher the

value, most of the access will be restricted

to a minimal set of files. For the same file

base, keeping the zipf parameter value

higher would hence reduce the disk access

on a relative basis.

We conducted a simple simulation to track

the number of times a new file will be

loaded into the memory, resulting in the

purging of the existing files from the

memory. We used a very simple memory

model. First we assume that 100% of the

memory will be dedicated toward serving

the file system. Directory and file choices

used in the model were as per specs for

the Support workload in SPECweb2005.

We start the memory with no file loaded

in it. Each time a new file is read, the file

is loaded into the memory. If the file was

previously accessed and is already in the

memory, the new file will be loaded from

the memory. When the memory is fully

loaded, and then encounters a file not

loaded into the memory, the new file will

be loaded while a file that has not been

accessed for the longest time will be

purged (if necessary, more than one file

may be purged in order to load the new

file). If this happens, it is called memory

churn and we note the percentage of file

accesses that result in a memory churn.

The following table shows the increase in

memory churn values, as the zipf

parameter is increased, for various

directory sizes and memory sizes.

Number
of

Director
ies

Memory
Size

Memory
churn %

for
alpha =

1.0

Memory
churn %

for
alpha =

1.2
500 4 GB 4.95% 3.89%

8 GB 4.19% 3.23%
16 GB 2.94% 2.09%
32 GB 0.00% 0.00%

1000 4 GB 8.62% 6.40%
8 GB 8.19% 5.18%
16 GB 6.80% 4.46%
32 GB 4.23% 2.07%
64 GB 0.00% 0.00%

2500 32 GB 10.76% 5.30%
64 GB 6.14% 0.13%

5000 64 GB 10.98% 2.78%
128 GB 1.90% 0.00%

Table 4: Memory Churn variation with zipf value
used in Support workload

Further study on the effect of this

parameter and a check on how it matches

similar real world applications is certainly

in order.

References
[1] An Explanation of the SPECweb96
Benchmark,

www.spec.org/osg/web96/webpaper.html

[2] SPECweb99 Release 1.02 whitepaper,
www.spec.org/web99/docs/whitepaper.html

[3] E. M. Nahum, Deconstructing
SPECweb99, Proceedings of 7th

International Workshop on Web Content
Caching and Distribution, August 2002.

[4] SPECweb99_SSL Design Document
and Implementation Overview,
www.spec.org/web99ssl/docs/whitepaper.html

[5] SPECweb2005 Design Document,
www.spec.org/web2005/design.html

[6] SPECweb2005 Run Rules Document,
www.spec.org/web2005/run_rules.html

