
SFS 2.0 1

SFS 2.0 Documentation Version 1.0

SFS 2.0

Standard Performance Evaluation Corporation (SPEC)
10754 Ambassador Drive Suite 201

Manassas, VA 20109
(703) 331-0180

www.specbench.org

Copyright (c) 1997 by Standard Performance Evaluation Corporation (SPEC)
All rights reserved



SFS 2.0 Documentation Version 1.0

2 SFS 2.0

SPEC and SFS are registered trademarks of the Standard Performance Evaluation Corporation

NFS is a registered trademark of Sun Microsystems, Inc.



SFS 2.0 3

SFS 2.0 Documentation Version 1.0

CHAPTER 1 Introduction 7

LADDIS to SPECsfs 7
The old SFS 1.1 work load7
The new work loads for SFS 2.08

Basis for change in mix of operations.8
Modifications in the file set of the benchmark8

CHAPTER 2 Running Instructions 11

Detailed Running Instructions 11
Configuration 11
Complying with the Uniform Access Rule13
More obscure variables in the RC file.16
Tuning 17

CHAPTER 3 Tools Interface 19

SFS Tools Introduction 19
SFS structure 19
Setting up the SFS Environment and building tools20
Using the RUNSFS 20

Novice Mode 21
Setting the Environment/Compiler Variables 22
Makefile Wrappers 22
Command Wrappers 25
Main Execution 26
Running the Benchmark 27
Editing an Existing _rc File: 31
Viewing Existing Results: 33

Advanced Mode 33
Wrapper files & Compiling the Benchmark Programs 34
Setting up the SPECsfs Parameters 36

SFS Remote Client Setup Utilities40
SFS Run-Prerequisites, Validation & Execution40
Viewing the results and archiving43
Limitations of the Tools 44

Compiling and Running SFS without the menu-driven tools44

CHAPTER 4 SPECsfs97 Run and Disclosure Rules 47

Introduction 47
Definitions 47
Overview of SPEC SFS Release 2.0 Run Rules48
Benchmark Software Requirements48



SFS 2.0 Documentation Version 1.0

4 SFS 2.0

Server and Client Software48
Vendor Makefile Wrappers48
Benchmark Source Code Changes49

Protocol and Server Configuration and Network Requirements49
NFS protocol requirements49
Server configuration requirements50
SPEC’s Description of Stable Storage for SFS 2.050

Protocol definition of stable storage and its use 50
Stable storage further defined 50
Examples of stable storage 51
Examples which are not considered stable storage 51

SPEC’s Description of Uniform Access for SFS 2.051
Uniform access algorithm 51
Examples of uniform access 52

Network configuration requirements52

Benchmark Execution Requirements52
Server File System Creation and Configuration52
Data Point Specification for Results Disclosure53
Maximum response time for Results Disclosure53
Over all response time calculation53
Benchmark Modifiable Parameters53

LOAD 54
INCR_LOAD 54
NUM_RUNS 54
PROCS 54
CLIENTS 54
MNT_POINTS 54
BIOD_MAX_WRITES 54
BIOD_MAX_READS 54
TCP 54
NFS_VERSION 55
SFS_USER 55
SFS_DIR 55
WORK_DIR 55
PRIME_MON_SCRIPT 55
PRIME_MON_ARGS 55
RSH 55

Valid methods for benchmark execution55

Results Disclosure 55
Benchmark metric or minimum disclosure56
Full disclosure of benchmark results56

Server hardware configuration 56
Server CPU configuration 56
Server stable storage configuration 56
Server network configuration 56
Other server hardware configuration 57

Server software configuration 57
Client hardware configuration 57
Client software configuration 57
Network hardware configuration 57
Benchmark configuration 57



SFS 2.0 5

SFS 2.0 Documentation Version 1.0

Benchmark results 58
Miscellaneous information 58

CHAPTER 5 Frequently Asked Questions 59

SPECsfs97 Benchmark Press Release 59
What is SPEC SFS 2.0 and how does this benchmark compare to other network file system (NFS) bench-

marks? 59
Does this benchmark replace the SPEC SFS 1.1 suite? 59
Can SPEC SFS 2.0 results be compared to SFS 1.1 results? 59
What improvements have been made to SPEC SFS 2.0? 59
How was the SPEC SFS 2.0 workload determined? 59
What is the metric for SPEC SFS 2.0? 59
Are the metrics for SPEC SFS 2.0 different than the metric for SFS 1.1? 59
How widespread is NFS version 3? 60
What is the correlation between the TPC (Transaction Processing Council) benchmarks and SPEC SFS 2.0?

60
Is SPEC SFS 2.0 a CPU- or I/O-intensive benchmark? 60
For what computing environment is SPEC SFS 2.0 designed? 60
Can users measure NFS performance for workloads other than the one provided within SPEC SFS 2.0? 60
To what extent is the server's measured performance within SPEC SFS 2.0 affected by the client's perfor-

mance? 60
Why have only three companies reported SPECsfs97 results in conjunction with this announcement? 60
How does SPEC validate numbers that it publishes? 60
Are the reported SFS 2.0 configurations typical of systems sold by vendors? 60
Do the SFS 2.0 run and disclosure rules allow results for a clustered server? 61
Why do so few published results approach SPEC's response-time threshold cutoff of 40 milliseconds? 61
Why was the response-time threshold reduced from 50 ms for SFS 1.1 to 40 ms for SFS 2.0? 61
What resources are needed to run the SPEC SFS 2.0 benchmark? 61
What is the estimated time needed to set up and run SPEC SFS 2.0? 61
What shared resources does SPEC SFS 2.0 use that might limit performance? 61
SPEC's CPU95 benchmark defines compiler optimization flags that can be used in testing. Does SPEC SFS

2.0 set tuning parameters? 61
Can a RAM disk be used within a SPEC SFS 2.0 configuration? 61
How will the choice of networks affect SFS 2.0 results? 62
Is SPEC SFS 2.0 scalable with respect to CPU, cache, memory, disks, controllers and faster transport media?

62
What is the price of a SPEC SFS 2.0 license and when will it be available? 62
How much is an upgrade from SFS 1.1 to SFS 2.0? 62
Can users get help in running SPEC SFS 2.0? 62

Running the benchmark62
Do I need to measure NFSv2 _and_ NFSv3? TCP and UDP? 62
How do I get started running the SPECsfs97 benchmark? 62
I am running into problems setting up and running the benchmark. What can I do? 62
I have read the User's Guide. But I am still running into problems. What can I do next? 62
How does one abort a run? 62
For a valid run, which parameters are required to be unchanged? 62
Is there a quick way to debug a testbed? 62
When I specify 1000 ops/sec in the sfs_rc, the results report only 996 ops/sec requested, why is it less? 63
The number of operations/second that I achieve is often slightly higher or slightly lower than the requested

load. Is this a problem? 63



SFS 2.0 Documentation Version 1.0

6 SFS 2.0

Tuning the Server 63
What are a reasonable set of parameters for running the benchmark? 63
When I request loads of 1000, 1300, 1600 OPS, I get 938, 1278, and 1298 OPS, respectively. Why do I not

get the requested load? 63
How do I increase the performance of our server? 63

Submission of Results63
We have a valid set of results. How do we submit these results to SPEC? 63

CHAPTER 6 Bibliography 65



SFS 2.0 7

SFS 2.0 Documentation Version 1.0 Introduction

CHAPTER 1 Introduction

1.0  LADDIS to SPECsfs

SPEC released SFS 1.0 in 1993 in November of 1994 SFS 1.1 was released which fixed a set of minor problems. Ver-
sion 1.X of the SFS benchmark and its related work load has commonly been referred to as LADDIS [Wittle]. SFS
1.X contains support for measuring NFS version 2 servers with the UDP network transport.

With the advance of NFS server technology and the continuing change in customer work loads, SPEC has worked to
update SFS 1.1 to reflect these changes. SFS 2.0 reflects the efforts of SPEC. With the release of SFS 2.0, the LAD-
DIS name is being replaced with the preferred name of SPECsfs.

2.0  The old SFS 1.1 work load

The SPECsfs benchmark is a synthetic benchmark that generates an increasing load of NFS operations against the
server and measures the response time (which degrades) as load increases. The previous version, SFS 1.1, only sup-
ports NFS version 2 over UDP for results generation. SFS 2.0 adds support for NFS version 3 for server measure-
ments. SFS 2.0 also adds support for the use of TCP as a network transport in generating benchmark results. The
SPECsfs work load consists primarily of the mix of NFS operations, the file set, block size distribution, and the per-
centage of writes which are appends versus overwrites.

The single work load in SFS 1.1 measures NFS Version 2 over UDP and presents the server with a heavy write-ori-
ented mix of operations (see Table 1).

The 15% WRITE component for NFS is considered high, and WRITE activity dominates processing on most servers
during a run of the SFS 1.1 work load. The operation mix for the SFS 1.1 work load was obtained primarily from nhf-
sstone (a synthetic NFS Version 2 benchmark developed by Legato Systems). Block size and fragment distributions
were derived from studies at Digital. Append mode writes account for 70% of the total writes generated by the work
load.

In SFS 1.1, 5MB per NFS op/s of data is created to force increasing disk head motion when the server misses the
cache and 1MB per NFS op/s is actually accessed (that is 20% of the data created is accessed at any point generated).
The 1MB of data accessed per NFS op/s is accessed according to a Poisson distribution to provide a simulation of
more frequently accessed files.



SFS 2.0 Documentation Version 1.0 Introduction

8 SFS 2.0

3.0  The new work loads for SFS 2.0

SFS 2.0 supports both NFS version 2 and NFS version 3. The results for each version are not comparable since they
were not derived from a single work load study. The NFS Version 2 mix was derived from NFS server data. The NFS
Version 3 mix was desk-derived from the NFS Version 2 mix. Neither of these work loads are comparable to the SFS
1.1 work load

3.1  Basis for change in mix of operations.

From SFS 1.1, there are two main areas of change in the work load generated by the benchmark.

To determine the work load mix, data was collected from over 1000 servers over a one month period. Each server was
identified as representing one of a number of environments, MCAD, Software Engineering, etc. A mathematical clus-
ter analysis was performed to identify a correlation between the servers. One cluster contained over 60% of the serv-
ers and was the only statistically significant cluster. There was no correlation between this mix and any single
identified environment. The conclusion was that the mix is representative of most NFS environments and was used as
the basis of the NFS version 2 work load.

Due to the relatively low market penetration of NFS version 3 (compared to NFS version 2), it was difficult to obtain
the widespread data to perform a similar data analysis. Starting with the NFS version 2 mix and using published com-
parisons of NFS version 3 and NFS version 2 given known client work loads [Pawlowski], the NFS version 3 mix was
derived and verified against the Sun Microsystems network of servers.

3.2  Modifications in the file set of the benchmark

The file set in the SFS 2.0 work loads has been modified so that the overall size has doubled as compared to SFS 1.1
(10 MB per ops/s load requested load). As disk capacities have grown, so has the quantity stored on the disk, by
increasing the overall file set size a more realistic access pattern will occur. Although the size has doubled, the per-
centage of data accessed was cut in half resulting in the same absolute amount of data accessed. While the amount of

TABLE 1.  SFS work loads and their mix percentages

SFS 1.1 SPECsfs97 SPECsfs97

Operation NFSv2 NFSv2 NFSv3

LOOKUP 34% 36% 27%

READ 22% 14% 18%

WRITE 15% 7% 9%

GETATTR 13% 26% 11%

READLINK 8% 7% 7%

READDIR 3% 6% 2%

CREATE 2% 1% 1%

REMOVE 1% 1% 1%

FSSTAT 1% 1% 1%

SETATTR 1%

READDIRPLUS 9%

ACCESS 7%

COMMIT 5%



SFS 2.0 9

SFS 2.0 Documentation Version 1.0 Introduction

disk space used has grown at a rapid rate, the amount actually accessed has grown at a substantially slower rate. Also
the file set has been changed to include a broader range of file sizes (see table below). The basis for this modification
was a study done of a large AFS distributed file system installation that was at the time being used for a wide range of
applications. These applications ranged from classic software development to administrative support applications to
automated design applications and their data sets. The new file set includes some very large files which are never
actually accessed but which affect the distribution of files on disk by virtue of their presence. Finally, the files are
selected by SFS 2.0 on a “best fit” basis, instead of purely random as with SFS 1.1.

TABLE 2. File size distribution

Percentage Filesize

33% 1KB

21% 2KB

13% 4KB

10% 8KB

8% 16KB

5% 32KB

4% 64KB

3% 128KB

2% 256KB

1% 1MB



SFS 2.0 Documentation Version 1.0 Introduction

10 SFS 2.0



SFS 2.0 11

SFS 2.0 Documentation Version 1.0 Running Instructions

CHAPTER 2 Running Instructions

1.0  Detailed Running Instructions

1.1  Configuration

There are several things you must set up on yourserver before you can successfully execute a benchmark run.

1. Configure enough disk space. SPECsfs needs 10 MB of disk space for each IOPS you will be generating, with
space for 10% growth during a typical benchmark run (10 measured load levels, 5 minutes per measured load).
You may mount your test disks anywhere in your server's file space that is convenient for you.

The IOPS a server can process is often limited by the number if independent disk drives configured on the server.
At the time this User's Manual was written, a disk drive could generally sustain on the order of 100-200 IOPS.
This is only a rule of thumb, and this value will change as new technologies become available. However, you will
need to ensure you have sufficient disks configured to sustain the load you intend to measure.

2. Initialize and mount all file systems. According to the Run and Disclosure Rules, you must completely initialize
all file systems you will be measuring before every benchmark run. On Unix systems, this is accomplished with
the “newfs” command. Just deleting all files on the test disks in not sufficient because there can be lingering
effects of the old files (e.g. the size of directory files, location of inodes on the disk) which effect the performance
of the server. The only way to ensure a repeatable measurement is to re-initialize all data structures on the disks
between benchmark runs. However, if you are not planning on disclosing the result, you do not need to perform
this step.

3. Export all file systems to all clients. This gives the clients permission to mount, read, and write to your test disks.
The benchmark program will fail without this permission.

4. Verify that all RPC services work. The benchmark programs use port mapping, mount, and NFS services provided
by the server. The benchmark will fail if these services do not work for all clients on all networks. If your client
systems have NFS client software installed, one easy way to do this is to attempt mounting one or more of the
server's disks on the client.

5. Ensure your server is idle. Any other work being performed by your server is likely to perturb the measured
throughput and response time. The only safe way to make a repeatable measurement is to stop all non-benchmark
related processing on your server during the benchmark run.

6. Ensure that your test network is idle. Any extra traffic on your network will make it difficult to reproduce your
results, and will probably make your server look slower. The easiest thing to do is to have a separate, isolated net-
work between the clients and the server during the test.

At this point, your server should be ready to measure. You must now set up a few things on your client systems so
they can run the benchmark programs.

1. Create “spec” user. SPECsfs should run as a non-root user.

2. The SPECsfs programs must be installed on clients.



SFS 2.0 Documentation Version 1.0 Running Instructions

12 SFS 2.0

3. Ensure sfs and sfs3 are setUID root, if necessary. Some NFS servers only accept mount requests if sent from a
reserved UDP or TCP port, and only the root user can send packets from reserved ports. Since SPECsfs generally
is run as a non-root user, the sfs and sfs3 programs must be set to execute with an effective UID of root.

To get the benchmark to use a reserved port, you must include a-DRESVPORT option in your compile com-
mand. This is easiest to accomplish by editing the Makefile wrapper file (M.xxxx) for your client systems. The
build process will then make the client use a reserved port and will arrange to run the benchmark programs as root.
However, you may want to verify this works the first time you try it.

4. Configure and verify network connectivity between all clients and server. Clients must be able to send IP packets
to each other and to the server. How you configure this is system-specific and is not described in this document.
Two easy ways to verify network connectivity are to use a “ping” program or the netperf benchmark(http://
onet1.external.hp.com/netperf/NetperfPage.html).

5. If clients have NFS client code, verify they can mount and access server file systems. This is another good way to
verify your network is properly configured. You should unmount the server's test disks before running the bench-
mark.

6. Configure remote shell access. The Prime Client needs to be able to execute commands on the other client systems
using rsh (remsh on HP-UX, AT&T Unix, and Unicos). For this to work, you need to create a .rhosts file in the
spec user's home directory.

A good test of this is to execute this command from the prime client:

     $ rsh client_name "rsh prime_client date"

If this works, all is well.

7. The Prime Client must have sufficient file space in the SFS file tree to hold the result and log files for a run. Each
run generates a log file of 10 to 100 kilobytes, plus a result file of 10 to 100 kilobytes. Each client also generates a
log file of one to 10 kilobytes.

Once you have the clients and server configured, you must set some parameters for the benchmark itself, which you
do in a file called the “rc file”. The actual name of the file is a prefix picked by you, and the suffix “_rc”. The default
version shipped with the benchmark is delivered as “sfs_rc” in the benchmark source directory. The SPECsfs tools
allow you to modify parameters in the rc file. If you want to manually edit this file, thesfs_rc file should be copied to
theresults directory. The sfs_rc file can then be edited directly. Thesfs_rc file is executed by a Bourne shell program,
so all the lines in the RC file must be in Bourne shell format. Most important, any variable which is a list of values
must have its value enclosed in double quotes.

There are several parameters you must set, and several others you may change to suit your needs while performing a
disclosable run. There are also many other parameters you may change which change the benchmark behavior, but
lead to an undisclosable run (for example, turning on debug logging).

The parameters you can/must set are:

1. MNT_POINTS : This parameter specifies the names of the file systems the clients will use when testing the
server. It can take two forms.

The first form is a list of host:path pairs specifying the file systems this particular client will be using. For exam-
ple, if the server is named “testsys” and has three test disks named “/test1”, “/test2”, and “/test3”, the list would be
“testsys:/test1 testsys:/test2 testsys:/test3”. You must be very careful when specifying the mount point to comply
with the uniform access rule (see below).



SFS 2.0 13

SFS 2.0 Documentation Version 1.0 Running Instructions

The second form is simply the name of a file containing a list of mount points for each client. The format of the
file is:

      client_name server:path server:path...
      client_name server:path server:path...

And so on, one line for each client system. This file gets stored in the “results” directory, the same place as the rc
file.

2. LOAD , INCR_LOAD , andNUM_RUNS: These parameters specify the aggregate load the clients will generate.
You can specify the load points two ways:

• You can explicitly specify a list of load levels in LOAD. So, if you want to test a load of 100, 300, and 700 IOPS,
you would set LOAD to “100 300 700".

• If you want to test a set of evenly spaced load points, set all three parameters. Set LOAD to the lowest load level,
set INCR_LOAD the amount you would like to increase the load for each measured run, and set NUM_RUNS to
the number of times you would like to increment the load. This is the easiest way to configure a disclosable run.

For example, if you would like to measure 10 evenly spaced points ending at 2000 IOPS, you would set LOAD to
200, INCR_LOAD to 200, and NUM_RUNS to 10.

3. CLIENTS : This is the names of all the client systems you will use to load your server. If you will be generating
load with the prime client, include it on this list.

4. NUM_PROCS: This is the number of load generating processes (“procs”) you want to run on each client system.
As you add procs, you can have more NFS requests outstanding at any given time, and you can use more file sys-
tems on the server, all of which tends to increase the load your server can process (until either the disks or the pro-
cessors run out of capacity).

There is a relationship between the value of PROCS, CLIENTS and MNT_POINTS. The number of mount points
specified in MNT_POINTS must equal the value of PROCS, or equal the value of PROCS times the number of
clients in CLIENTS. In the first case, each mount point will be accessed by one proc on each client. In the second
case, each listed mount point will be accessed by exactly one proc on one client. The first PROC mount points will
be used by the first client, the second PROC mount points by the second client, and so forth.

You may specify the same mount point multiple times in MNT_POINTS. This allows you to have more than one
process accessing a given disk on the server, without having all clients loading that disk.

5. NFS_VERSION: This may be left unset or set to 2 to measure NFS protocol version 2, and set to 3 to measure
NFS protocol version 3.

6. TCP: Set this to 1 or “on” to use TCP to communicate between the clients and the server. Leave it unset or set to
0 to use UDP.

7. BIOD_MAX_READS  andBIOD_MAX_WRITES : SPECsfs emulates the read-ahead and write-behind behav-
ior of NFS block I/O daemons. These allow a client to have multiple read and write requests outstanding at a given
time. BIOD_MAX_READS and BIOD_MAX_WRITES configure how many read or write operations SPECsfs
will transmit    before stopping and waiting for replies. You can set these to any value from 0 to 32, inclusive.

There are many other parameters you can modify in the rc file, but generally none are necessary. They allow you to
change the NFS operation mix, change run duration parameters, or turn on debugging information. Modifying most
of these parameters will lead to an invalid (that is, undisclosable) run. The full list of parameters is documented at the
end of the sfs_rc file and at the end of this section.

1.2  Complying with the Uniform Access Rule



SFS 2.0 Documentation Version 1.0 Running Instructions

14 SFS 2.0

The most common way to perform an undisclosable run is to violate the uniform access rule See “SPEC’s Description
of Uniform Access for SFS 2.0” on page 51. In some systems, it is possible to complete an NFS operation especially
fast if the request is made through one network interface and the data is stored on just the right file system. The intent
of the rule is to prevent the benchmarker (that's you) from taking advantage of these fast paths to get an artificially
good result.

The specific wording of the rule states that “for every network, all file systems should be accessed by all clients uni-
formly.” The practical implication of the uniform access rule is you must be very careful with the order in which you
specify mount points in the MNT_POINTS variable.

The fool-proof way to comply with the uniform access rule is to have every client access every file system, evenly
spreading the load across the network paths between the client and server. This works pretty well for small systems,
but may require more procs per client than you want to use when testing large servers.

If you want to run fewer procs on your clients' than you have file systems, you will need to take some care figuring out
the mount points for each client.

Uniform access is a slippery subject. It is much easier to examine a configuration and say whether it is uniform than it
is to come up with a perfect algorithm for generating complying mount point lists. There will always be new configu-
rations invented which do not fit any of the examples described below. You must always examine the access patterns
and verify there is nothing new and innovative about your systems which makes it accidentally violate the uniform
access rule.

Below are some examples of generating mount point lists which do comply with the uniform access rule.

To begin, you must first determine the number of file systems, clients, and load generating processes you will be
using. Once you have that, you can start deciding how to assign procs to file systems. As a first example, we will use
the following file server:

Clients C1 and C2 are attached to Network1, and the server's address on that net is S1. It has two disk controllers
(DC1 and DC2), with four file systems attached to each controller (F1 through F8).

You start by assigning F1 to proc1 on client 1. That was the easy part.

You next switch to DC2 and pick the first unused file system (F5). Assign this to client 1, proc 2.

Continue assigning file systems to client 1, each time switching to a different disk controller and picking the next
unused disk on that controller, until client 1 has PROC file systems. In the picture above, you will be following a zig-
zag pattern from the top row to the bottom, then up to the top again. If you had three controllers, you would hit the
top, then middle, then bottom controller, then move back to the top again. When you run out of file systems on a sin-
gle controller, go back and start reusing them, starting from the first one.

ServerNetwork 1

DC 1

DC 2

F1 F2 F3 F4

F5 F6 F7 F8

C1 C2



SFS 2.0 15

SFS 2.0 Documentation Version 1.0 Running Instructions

Now that client 1 has all its file systems, pick the next controller and unused file system (just like before) and assign
this to client 2. Keep assigning file systems to client 2 until it also has PROC file systems.

If there was a third client, you would keep assigning it file systems, like you did for client 2.

If you look at the result in tabular form, it looks something like this (assuming 4 procs per client):

C1: S1:F1 S1:F5 S1:F2 S1:F6
C2: S1:F3 S1:F7 S1:F4 S1:F8

The above form is how you would specify the mount points in a file. If you wanted to specify the mount points in the
RC file directly, the it would look like this:

CLIENTS=”C1 C2”
PROCS=4
MNT_POINTS=”S1:F1 S1:F5 S1:F2 S1:F6 S1:F3 S1:F7 S1:F4 S1:F8

If we had 6 procs per client, it would look like this:

C1: S1:F1 S1:F5 S1:F2 S1:F6 S1:F3 S1:F7
C2: S1:F4 S1:F8 S1:F1 S1:F5 S1:F2 S1:F6

Note that file systems F1, F2, F5, and F6 each get loaded by two procs (one from each client) and the remainder get
loaded by one proc each. Given the total number of procs, this is as uniform as possible. In a real benchmark configu-
ration, it is rarely useful to have an unequal load on a given disk, but there might be some reasons this makes sense.

The next wrinkle comes if you should have more than one network interface on your server, like so:

Clients C1 and C2 are on Network1, and the server's address is S1. Clients C3 and C4 are on Network2, and the
server's address is S2.

We start with the same way, assigning F1 to proc 1 of C1, then assigning file systems to C1 by rotating through the
disk controllers and file systems. When C1 has PROC file systems, we then switch to the next client on the same net-
work, and continue assigning file systems. When all clients on that network have file systems, switch to the first client
on the next network, and keep going. Assuming two procs per client, the result is:

C1: S1:F1 S1:F5
C2: S1:F2 S1:F6
C3: S2:F3 S2:F7
C4: S2:F4 S2:F8

And the mount point list is:

  MNT_POINTS=”S1:F1 S1:F5 S1:F3 S1:F7 S2:F2 S2:F6 S2:F4 S2:F8”

Server

Network 1 DC 1

DC 2

F1 F2 F3 F4

F5 F6 F7 F8

C1 C2

Network 2
C3 C4



SFS 2.0 Documentation Version 1.0 Running Instructions

16 SFS 2.0

The first two mount points are for C1, the second two for C2, and so forth.

These examples are meant to be only that, examples. There are more complicated configurations which will require
you to spend some time analyzing the configuration and assuring yourself (and possibly SPEC) that you have
achieved uniform access. You need to examine each component in your system and answer the question “is the load
seen by this component coming uniformly from all the upstream components, and is it being passed along in a uni-
form manner to the downstream ones?” If the answer is yes, then you are probably in compliance.

1.3  More obscure variables in the RC file.

As mentioned above, there are many more parameters you can set in the RC file. Here is the list and what they do.

The following options may be set and still yield a disclosable benchmark run:

1. SFS_USER: This is the user name of the user running the benchmark. It is used when executing remote shell
commands on other clients from the prime client. You would only want to modify this if you are having trouble
remotely executing commands.

2. SFS_DIR andWORK_DIR : These are the directory names containing the SPECsfs programs (SFS_DIR), the
RC file, and logging and output files (WORK_DIR ). If you configure your clients with the same path for these
directories on all clients, you should not need to fool with this. One easy way to accomplish this is to export the
SFS directory tree from the prime client and NFS mount it at the same place on all clients.

3. PRIME_MON_SCRIPT  andPRIME_MON_ARGS : This is the name (and argument list) to an program which
SPECsfs will start running during the measurement phase of the benchmark. This is often used to start some per-
formance measurement program while the benchmark is running so you can figure out what is going on and tune
your system.

Look at the script “sfs_ext_mon” in the SPECsfs source directory for an example of a monitor script.

4. RSH: This is the name of the remote command execution command on your system. The command wrapper file
(C.xxxx) should have set this for you, but you can override it here. On most Unix systems, it is “rsh”, but a few
(e.g. HP-UX and Unicos), it's called “remsh”.

These remaining parameters may be set, but SPEC will not approve the result for disclosure. They are available only
to help you debug or experiment with your server

5. WARMUP_TIME  andRUNTIME : These set the duration of the warmup period and the actual measurement
period of the benchmark. They must be 300 for SPEC to approve the result.

6. MIXFILE : This specifies the name of a file in WORK_DIR which describes the operation mix to be executed by
the benchmark. You must leave this unspecified to disclose the result. However, if you want to change the mix for
some reason, this gives you the ability.

Look in the file sfs_c_man.c near the function setmix() for a description of the mix file format. The easiest to use
format is as follows:

SFS MIXFILE VERSION 2
opname xx%
opname yy%
# comment
opname xx%

The first line must be the exact string “SFS MIXFILE VERSION 2" and nothing else. The subsequent lines are
either comments (denoted with a hash character in the first column) or the name of an operation and it's percent-
age in the mix (one to three digits, followed by a percent character). The operation names are: null, getattr, setattr,
root, lookup, readlink, read, wrcache, write, create, remove, rename, link, symlink, mkdir, rmdir, readdir, fsstat,
access, commit, fsinfo, mknod, pathconf, and readdirplus. The total percentages must add up to 100 percent.



SFS 2.0 17

SFS 2.0 Documentation Version 1.0 Running Instructions

7. ACCESS_PCNT: This sets the percentage of the files created on the server which will be accessed for I/O opera-
tions (i.e. will be read or written).

8. DEBUG: This turns on debugging messages to help you understand why the benchmark is not working. The syn-
tax is a list of comma-separated values or ranges, turning on debugging flags. A range is specified as a low value,
a hyphen, and a high value (e.g. “3-5” turns on flags 3, 4, and 5), so the value “3,4,8-10” turns on flags 3, 4, 8, 9,
and 10.

To truly understand what gets reported with each debugging flag, you need to read the source code. The messages
are terse, cryptic, and not meaningful without really understanding what the code is trying to do. Note the child
debugging information will only be generated by one child process, the first child on the first client system.

Here are the available flags:

• 1 (DEBUG_NEW_CODE): Obsolete and unused.

• 2 (DEBUG_PARENT_GENERAL): Information about the parent process running on each client system.

• 3 (DEBUG_PARENT_SIGNAL): Information about signals between the parent process and child processes.

• 4 (DEBUG_CHILD_ERROR): Information about failed NFS operations.

• 5 (DEBUG_CHILD_SIGNAL): Information about signals received by the child processes.

• 6 (DEBUG_CHILD_XPOINT): Every 10 seconds, the benchmark checks it's progress versus how well it's sup-
posed to be doing (for example, verifying it is hitting the intended operation rate). This option gives you informa-
tion about each checkpoint.

• 7 (DEBUG_CHILD_GENERAL): Information about the child in general.

• 8 (DEBUG_CHILD_OPS): Information about operation starts, stops, and failures.

• 9 (DEBUG_CHILD_FILES): Information about what files the child is accessing.

• 10 (DEBUG_CHILD_RPC): Information about the actual RPCs generated and completed by the child.

• 11 (DEBUG_CHILD_TIMING): Information about the amount of time a child process spends sleeping to pace
itself.

• 12 (DEBUG_CHILD_SETUP): Information about the files, directories, and mix percentages used by a child pro-
cess.

• 13 (DEBUG_CHILD_FIT): Information about the child's algorithm to find files of the appropriate size for a given
operation.

1.4  Tuning
• How many disks per IOPS

• How many networks per IOPS

• How many client systems per network



SFS 2.0 Documentation Version 1.0 Running Instructions

18 SFS 2.0



SFS 2.0 19

SFS 2.0 Documentation Version 1.0 Tools Interface

CHAPTER 3 Tools Interface

1.0  SFS Tools Introduction

This section briefly describes the usage of the run tools provided with the SPEC System File Server (SFS) Release 2.0
suite. These tools provide both a novice mode (query driven) and a advanced mode (menu driven) interface that pro-
vide the user with helpful scripts that can set up the environment, set various benchmark parameters, compile the
benchmark, conduct benchmark validation, execute the benchmark, view results from a run and archive the results.
The results obtained from multiple data points within a run are also collected in a form amenable for ease of use with
other result formatting tools. These tools are used on the primary load generator (Prime-Client) for benchmark setup
and control as well as on the rest of the NFS load generators (clients) to assist in compiling the programs.

While not required to run the benchmark, the SFS tools can facilitate the “quick” running of the benchmark for tuning
various components of the system and results reporting.

This section does not cover the complete Client-Server environment setup in detail. It touches only the portions cur-
rently handled by the tools. For information on how to set up and run the SFS suite the reader is advised to refer to
CHAPTER 4, ”SPECsfs97 Run and Disclosure Rules”, on page 47.

2.0  SFS structure

The SFS Benchmark uses the UNIX “Makefile” structure (similar to other SPEC Suites) to build tools, compile the
benchmark source into executables, and to clean directories of all executables. If you are familiar with other SPEC
suites, navigating around SFS should be very similar. It is important to note that unlike other SPEC benchmarks,
SPECsfs’s validation and execution functions are built into the “sfs_mgr” script supplied with the benchmark. This
script is used by the menu tools when validate or run targets are chosen.

The following is a quick overview of the benchmark’s directory structure. Please note that $SPEC is the path in the
file system at which the benchmark is loaded.

1. Benchmark tools

The benchmark tools located in the “binsrc” directory. These tools must be built (as described in the next section)
before they can be used. During the tools build, the executables are transferred to the “$SPEC/benchspec/162.nfsv2/
bin”directory.

2. Makefile Wrappers (M.<vendor>)

The Makefile wrappers are located in the “$SPEC/benchspec/162.nfsv2” directory. The Makefile wrappers contain
specific vendor compiler options and flags.

3. Command Wrappers (C.<vendor>)

The Command wrappers are located in the “$SPEC/cmdwrappers” directory. The Command Wrappers contain the
vendor specific command paths and commands for the remote utilities.

4. SPECsfs source



SFS 2.0 Documentation Version 1.0 Tools Interface

20 SFS 2.0

The benchmark source programs are located in the “$SPEC/benchspec/162.nfsv2/src” directory.

5. SPECsfs executables and scripts

Once SPECsfs is compiled, the resultant executables, along with copies of the necessary scripts, are moved to the
“$SPEC/benchspec/162.nfsv2/result” directory. This directory is also known as $RESULTDIR.

6. SFS_RC files

Both the SFS default and user modified _rc files are located in the “$SPEC/benchspec/162.nfsv2/result” directory.
these files contain the parameter values to be used by the SFS manager (sfs_mgr) script as well as the tools driving the
various menus.

3.0  Setting up the SFS Environment and building tools

After extracting the SPECsfs suite from the CD, change directory into the uppermost SPEC directory (SPEC home
directory). The user’s home environment can be initialized by executing:

For C-shell users: “source sfsenv”

For Bourne or Korn shell users: “. ./sfsenv”

By executing this command, the SPEC environment variables SPEC, BENCH, RESULTDIR, TESTSRESULTS, etc.
are all defined. The SPEC home directory can now be referenced as $SPEC.

After setting up the SPEC home environment, the tools used by all the menus can be created by the following com-
mand:

                “make bindir”

Once the make command completes, the “runsfs” script can be used to complete the installation process, to run the
benchmark and to view or archive the results.

The “runsfs” script will initially check to see if the sfsenv script has been executed. If it has not, it will execute it. It is
important to note that if “runsfs” executes the script, upon exiting the “runsfs” script, environment variables will no
longer be set. Additionally, the script will check if the “bindir” directory has been created. If it does not exist, it will
create it.

4.0  Using the RUNSFS

The SPECsfs tools consist of a series of scripts that help the user in the installation, configuration, and execution of
the benchmark.To invoke these tools, the user should run the “runsfs” script in the $SPEC directory. If the user has
not yet executed the “sfsenv” script or created the tools, this script will execute them. The user will initially be
prompted for the clients appropriate vendor type.



SFS 2.0 21

SFS 2.0 Documentation Version 1.0 Tools Interface

   Example of Vendor Type Prompt
   The benchmark has been ported to the following vendor\/OS list:

   att     compaq  dec_unix        dgc
   hpux10  hpux9   ibm     ingr
   moto    sgi     sni     solaris2
   sunos4  unicos  unisys  unixware
   vendor  xpg4.2

   Please enter your vendor type from the above list or press Return:

   dec_unix

   The default command file is being set to C.dec_unix .
   Executing the C.dec_unix file...

Following the users response, the associated Makefile wrapper and Command wrapper are selected as the default
wrappers. If the user wants to skip this step and go directly to the main SFS tools area, they may execute the “run_sfs”
script in the “$SPEC/benchspec/162.nfsv2” directory. In this case, the generic Makefile wrapper and Command
wrapper (M.vendor and C.vendor) files will be set as the default wrappers.

The user is then prompted if they want to use the Novice User Mode (query driven) or the Advanced User Mode
(menu driven). The Novice User Mode is the default session type. This is intended to walk the new user through a
benchmark setup, compilation, and execution as well as easily displaying benchmark results. For those familiar with
the benchmark’s setup and execution, Advanced Mode is preferred.

   Example of Preferred Session Type Prompt

   SPEC SFS tools may be run in one of two modes
       - novice mode ( query driven )
       - advanced mode ( menu driven )

   Do you want to run in Advanced mode or Novice mode (a/n(default) )?

4.1  Novice Mode

The following selection will summarize the Novice Mode user tools. The Novice Tools assumes that the user is unfa-
miliar with the SPECsfs environment. The user is lead through the test configuration and execution process via a
question and answer session. The tools initially help the user setup the client’s environment/compiler variables via
M.vendor and C.vendor files. After setting up the user environment, the tools allow the user to compile the bench-
mark, modify the test parameters in the _rc file, run a test, view the results of a test or archive test results. Please note
that the

Novice Tools contain a subset of the functions contained in the Advanced Tools.



SFS 2.0 Documentation Version 1.0 Tools Interface

22 SFS 2.0

The following section is intended to present the various functions available to the user via the Novice User Tools. The
following examples shows the querying structure of the Novice Mode Tools.

4.1.1  Setting the Environment/Compiler Variables

The first series of questions the user must answer deal with selecting the appropriate wrapper files for the particular
client/server environment. There are two types of wrapper files, Makefile wrappers and Command Wrappers. The
Makefile wrappers contain specific vendor compiler options and flags needed during the compilation process. The
Command wrappers contain the vendor specific command paths and commands needed for the remote utilities. This
is asked initially, since prior to many of the functions (i.e. benchmark compilation) it is important for the user to
select the appropriate wrappers.

4.1.2  Makefile Wrappers

Makefile wrapper selection and compiling of the benchmark programs need to be done on all clients including the
Prime-Client after initially installing SPECsfs on the load generators. The user is initially asked of they want to use
the default M.vendor file or a different makefile wrapper file.

        Do you want to use the default M.vendor file - M.dec_unix
        ( (y)es, (n)o )?

The default M.vendor file is associated with the client vendor type previously selected. For example, in the previous
example, the M.dec_unix file would be selected since a Digital client vendor type was selected. If the default M.ven-
dor file is selected, the user is given the option of modifying it contents. If the user would like to modify the file, the
tools will display the contents of the default M.vendor file.

        Do you want to use the default M.vendor file - M.dec_unix
        ( (y)es, (n)o )?  y
        Do you want to edit the M.dec_unix file ((y)es, (n)o)? y

                Checking Wrapper file.......

                        To Continue Please Press The <RETURN> key:



SFS 2.0 23

SFS 2.0 Documentation Version 1.0 Tools Interface

                     Current Settings

           1)  MACHID          ->  dec_osf
           2)  C COMPILER      ->  /bin/cc
           3)  C OPTIONS       ->  -O
           4)  C FLAGS         ->
           5)  LOAD FLAGS      ->
           6)  EXTRA CFLAGS    ->  -DUSE_POSIX_SIGNALS
           7)  EXTRA LDFLAGS   ->
           8)  LIBS            -> -lm
           9)  EXTRA LIBS      ->
          10)  OSTYPE          ->  -DOSF1
          11)  RESVPORT_MOUNT  ->

                   12)  Shell Escape
                   13)  Save Wrapper File
                   14)  Return to Main Menu

                    Select Setting :

If the user would like to use a different M.vendor file, the tool will display a list of all vendor specific makefile wrap-
pers currently available on the CD. The user can look into any vendor wrapper file and modify it suitably and store the



SFS 2.0 Documentation Version 1.0 Tools Interface

24 SFS 2.0

file on the system under the same or a different name and use it to compile the benchmark programs. These wrappers
are all named with a “M.” prefix.

        Do you want to use the default M.vendor file - M.dec_unix
        ( (y)es, (n)o )?   n

        The current M.vendor file is: M.dec_unix
        --------------------------------------

        The following is a list of the available M.vendor wrapper files.
        ----------------------------------------------------------------

        att     compaq  dec_unix        dgc
        hpux10  hpux9   ibm     ingr
        moto    sgi     sni     solaris2
        sunos4  unicos  unisys  unixware
        vendor  xpg4.2

              Enter only the VENDOR part of M.vendor file name
              Hit Return if using the current M.dec_unix: hpux10

               Checking Wrapper file .......

                        To Continue Please Press The <RETURN> key:

                     Current Settings

           1)  MACHID          ->  hp
           2)  C COMPILER      ->  /opt/ansic/bin/cc
           3)  C OPTIONS       ->  -O -Ae
           4)  C FLAGS         ->  -D_HPUX_SOURCE
           5)  LOAD FLAGS      ->
           6)  EXTRA CFLAGS    ->  -DHAS_GETHOSTNAME -DDNO_T_TYPES -DUSE_GETRLIMIT
           7)  EXTRA LDFLAGS   ->
           8)  LIBS            -> -lm
           9)  EXTRA LIBS      ->
          10)  OSTYPE          ->  -DHPUX
          11)  RESVPORT_MOUNT  ->

                   12)  Shell Escape
                   13)  Save Wrapper File
                   14)  Return to Main Menu

                    Select Setting :



SFS 2.0 25

SFS 2.0 Documentation Version 1.0 Tools Interface

Note that each item in the above menu is user definable and it is good practice to “save” the wrapper file under a dif-
ferent name if any parameter is modified.

4.1.3  Command Wrappers

The user is then prompted for the appropriate command wrappers (C.vendor) in order to define the appropriate com-
mands and command paths. Users are given the choice of the default C.vendor file or a different command wrapper

file.

        Do you want to use the default C.vendor file - C.dec_unix
        ( (y)es, (n)o )?

Similar to the M.vendor files, the default C.vendor file is associated with the client vendor type previously selected. If
the user selects the default C.vendor file, they will be given the option to modify the contents of this file. If they would
like to modify the file, the tools will display the contents of the c.vendor file.

        Do you want to use the default C.vendor command file - C.dec_unix
        ( (y)es, (n)o, (p)revious )?  y
        Do you want to edit the file ((y)es, (n)o, (p)revious)? y

          Current C.vendor Parameter Settings

           1)  PASSWD_FILE        -> /etc/passwd
           2)  FSTAB_FILE         -> /etc/fstab
           3)  GROUP_FILE         -> /etc/group
           4)  HOSTNAME_CMD       -> hostname
           5)  RSH_CMD            -> rsh
           6)  SHELL              -> /bin/sh
           7)  AWK_CMD            -> awk
           8)  PS_CMD             -> ps ax
           9)  ECHO               -> echo
          10)  NONL               ->

                   11)  Shell Escape
                   12)  Save C.vendor File
                   13)  Return to Main Menu

                      Select Setting :

If the user would like to use a different C.vendor file, the tool will display a list of all vendor specific command wrap-
pers currently available on the CD. The user can look into any vendor wrapper file and modify it suitably and store the
file on the system under the same or a different name and use it to compile the benchmark programs. These wrappers
are all named with a “C.” prefix.



SFS 2.0 Documentation Version 1.0 Tools Interface

26 SFS 2.0

        Do you want to use the default C.vendor command file - C.dec_unix
        ( (y)es, (n)o, (p)revious )?  n

        The following is a list of the available C.vendor wrapper files.
        ----------------------------------------------------------------
        C.sgi   C.hpux10        C.sni   C.dec_unix
        C.unixware      C.vendor        C.unicos        C.solaris2
        C.sunos4        C.intel C.hpux9 C.ibm
        C.att

              Enter only vendor part of M.vendor File name
              Hit Return if using C.dec_unix:

        Current C.vendor Parameter Settings

        1)  PASSWD_FILE        -> /etc/passwd
        2)  FSTAB_FILE         -> /etc/fstab
        3)  GROUP_FILE         -> /etc/group
        4)  HOSTNAME_CMD       -> hostname
        5)  RSH_CMD            -> rsh
        6)  SHELL              -> /bin/sh
        7)  AWK_CMD            -> awk
        8)  PS_CMD             -> ps ax
        9)  ECHO               -> echo
       10)  NONL               ->

                11)  Shell Escape
                12)  Save C.vendor File
                13)  Return to Main Menu

                    Select Setting :

Note that each item in the above menu is user definable and it is good practice to “save” the wrapper file under a dif-
ferent name if any parameter is modified.

4.1.4  Main Execution

Once the environment setup is complete, the user enters the main execution loop. The main execution loop is:

     Enter whether you want to (r)un, re(c)ompile, (e)dit an .rc file,
     (v)iew results, (a)rchive results, (p)revious question, (q)uit ...

The user is now given the option to: run the benchmark: compile (or recompile) the benchmark, edit the _rc file, view
existing test results, archive test results, or quit the test.



SFS 2.0 27

SFS 2.0 Documentation Version 1.0 Tools Interface

4.1.5  Running the Benchmark

If the user selects the run option, the tools will check if the benchmark has been compiled previously. If it has not yet
been compiled, the tools will initially compile the benchmark.

        Enter whether you want to (r)un, re(c)ompile, (e)dit an .rc file,
        (v)iew results, (a)rchive results, (p)revious question, (q)uit ... r

        Executable not found ... compiling benchmark ...

        The current M.vendor file is: M.dec_unix
        --------------------------------------

        The following is a list of the available M.vendor wrapper files.
        ----------------------------------------------------------------

        att     compaq  dec_unix        dgc
        hpux10  hpux9   ibm     ingr
        moto    sgi     sni     solaris2
        sunos4  unicos  unisys  unixware
        vendor  xpg4.2

              Enter only the VENDOR part of M.vendor file name
              Hit Return if using the current M.dec_unix:
        chmod +x run_sfs
        `librpclib.a’ is up to date.
                    :
                    :
                    :
         ./sfs_suchown  sfs sfs3
          ... Done

                         To Continue Please Press The <RETURN> key:

Once there is a benchmark executable available, the user will then be prompted for the appropriate _rc file. The user
is then allowed to select the appropriate _rc file. The user may select from any existing _rc files or may create a new
file.



SFS 2.0 Documentation Version 1.0 Tools Interface

28 SFS 2.0

          List of Available RC Files that End with _rc - Latest First
          ---------------------------------------------------------------------

          judy_rc short_v2_tcp_2dsk_rc    short_tcp_v3_rc test_tcp_2_rc
          test_tcp_3_rc   test_tcp_v2_rc  test_tcp_v3_rc  test_udp_2_rc
          debug_tcp_2_rc  full_tcp_v2_rc  full_tcp_v3_rc  full_udp_v2_rc
          full_udp_v3_rc  remote_rc       sfs_rc  short_rc
          short_tcp_rc    short_udp_v3_rc temp_rc test_new_rc

                         Enter your RC File name

                         Hit Return if using original sfs_rc templates with

                            default values.  This will prompt you for new

                            for new parameter values.

                         Else pick up an existing “ _rc” file from above list:

If the user selects the option to create a new _rc file using the sfs_rc file, they will be prompted for the appropriate
parameter values



SFS 2.0 29

SFS 2.0 Documentation Version 1.0 Tools Interface

     Load information:
     -----------------

        Current value of LOAD Inital/Series:

        To retain this value type <RETURN>

        For null value type <space> & <RETURN>

        The requsted load is the total load applied to the server.
        Example of a full curve: 100 200 300 400 500 600 700 800 900 100.

                Enter new LOAD Inital/Series value : 100 200 300 400 500

     NFS Version:
     ------------

        Current value of NFS Version:

        To retain this value type <RETURN>

        For null value type <space> & <RETURN>

        The NFS version parameter: NFS V2 - ““ or 2 (default), NFS V3 - 3

                Enter new NFS Version value :

     Protocol:
     ---------

        Current value of Use TCP:

        To retain this value type <RETURN>

        For null value type <space> & <RETURN>

        Network Transport parameter: NFS/UDP - ““ or 0 (default), NFS/TCP - 1.

                Enter new Use TCP value :

     Clients:
     --------

         Current value of Clients:



SFS 2.0 Documentation Version 1.0 Tools Interface

30 SFS 2.0

         To retain this value type <RETURN>

         For null value type <space> & <RETURN>

         Example of client listing: client1 client2 client3 client4

                Enter new Clients value : client1 client2

     Mount Points:
     -------------

        To retain this value type <RETURN>

        For null value type <space> & <RETURN>

        Mount point can either be a listing of mount points or a name of a file
        in the $WORK_DIR directory.

          Examples:

             1) listing: server:/mnt1 server:/mnt2 server:/mnt3 server:/mnt4

             2) mount file (each line represents one client’s mount points):
                client1 server:/mnt1 server:/mnt2 server:/mnt3 server:/mnt4

                Enter new Mount Points value : svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4

     Load Generating Processes:
     --------------------------

        To retain this value type <RETURN>

        For null value type <space> & <RETURN>

        The Load Generating Processes (PROCS) range should be greater than or equal to
8.

                Enter new Number of Load Generating Processes value : 4

        Saving the _rc file information ...

        New _rc file name: new_test_rc

Once the new file is generated or if the user opts to use an existing _rc file they will proceed to the execution of the
benchmark. The user must supply the tools with a unique test suffix name that will be appended to all test files (sfsval,
sfslog, sfsres, sfssum, sfsc*).



SFS 2.0 31

SFS 2.0 Documentation Version 1.0 Tools Interface

               Enter suffix for log files, results summary etc
                (Do not exceed 3 chars if there is a 14 character limit): test1

                   Mon Aug 11 21:43:46 EDT 1997
                    Executing run 1 of 10 ...  done
                   Mon Aug 11 21:54:46 EDT 1997
                    Executing run 2 of 10 ...  done
                   Mon Aug 11 22:06:18 EDT 1997
                    Executing run 3 of 10 ...  done
                   Mon Aug 11 22:18:17 EDT 1997
                    Executing run 4 of 10 ...  done
                   Mon Aug 11 22:30:41 EDT 1997
                    Executing run 5 of 10 ...  done
                   Mon Aug 11 22:43:33 EDT 1997
                    Executing run 6 of 10 ...  done
                   Mon Aug 11 22:56:55 EDT 1997
                    Executing run 7 of 10 ...  done
                   Mon Aug 11 23:10:40 EDT 1997
                    Executing run 8 of 10 ...  done
                   Mon Aug 11 23:24:49 EDT 1997
                    Executing run 9 of 10 ...  done
                   Mon Aug 11 23:39:23 EDT 1997
                    Executing run 10 of 10 ...  done

4.1.6  Editing an Existing _rc File:

The SPECsfs benchmark run time parameters in existing _rc file can be specified by selecting edit option and follow-
ing the sub-menu as shown here.

Note that the CLIENTS, LOAD, MNT_POINTS, PROC parameters MUST be supplied in order to run the bench-
mark. When specifying these values it is important to remember these rules:

1. The CLIENT parameter must have at least one client specified.

2. The LOAD parameter is the total load applied to the server. The benchmark will break the load down on a load
generator basis.

3. The MNT_POINTS must be specified in one of these two ways:

a.     svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4

b.     mount_point_file_name (each line represents the mount points for one cli-
ent.  The mount_point_file_name looks like the following:

            cl1 svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4

            cl2 svr:/mnt5 svr:/mnt6 svr:/mnt7 svr:/mnt8

4. The PROC parameter must be equal to the number of mount points specified on a per client basis.

Warning: The _rc files may be hand edited, however, any error introduced into the file may cause the tool to abort.



SFS 2.0 Documentation Version 1.0 Tools Interface

32 SFS 2.0

        Enter whether you want to (r)un, re(c)ompile, (e)dit an .rc file,
        (v)iew results, (a)rchive results, (p)revious question, (q)uit ... e

          List of Available RC Files that End with _rc - Latest First
          ---------------------------------------------------------------------

        new_test_rc     judy_rc short_v2_tcp_2dsk_rc    short_tcp_v3_rc
        test_tcp_2_rc   test_tcp_3_rc   test_tcp_v2_rc  test_tcp_v3_rc
        test_udp_2_rc   debug_tcp_2_rc  full_tcp_v2_rc  full_tcp_v3_rc
        full_udp_v2_rc  full_udp_v3_rc  remote_rc       sfs_rc
        short_rc        short_tcp_rc    short_udp_v3_rc temp_rc
        test_new_rc

                         Enter your RC File name

                         Hit Return if using original sfs_rc templates with

                            default values.  This will prompt you for new

                            for new parameter values.

                         Else pick up an existing “ _rc” file from above list: new_test_rc

          Current modifiable RC Parameter Settings (Page 1)
          All parameters except for LOAD are on a “per client”basis.

                 1)  LOAD               -> 100 200 300 400 500
                 2)  BIOD_MAX_WRITES    -> 2
                 3)  BIOD_MAX_READS     -> 2
                 4)  NFS_VERSION        ->
                 5)  NUM_RUNS           -> 1
                 6)  INCR_LOAD          -> 0
                 7)  CLIENTS            -> client1 client2
                 8)  MNT_POINTS         -> svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4
                 9)  PROCS              -> 4
                10)  TCP                ->

                        11)  Shell Escape
                        12)  Continue to view additional modifiable parameters
                        13)  Save RC File
                        14)  Return to Main Menu

                            Select Setting : 12

          Additional modifiable RC Parameter Settings (Page 2)

                 1)  PRIME_SLEEP        -> 0
                 2)  PRIME_MON_SCRIPT   ->
                 3)  DEBUG              ->
                 4)  DUMP               ->
                 5)  SFS_DIR            -> /local_mnt2/spec/spec-sfs2.0/benchspec/



SFS 2.0 33

SFS 2.0 Documentation Version 1.0 Tools Interface

162.nfsv2
                 6)  WORK_DIR           -> /local_mnt2/spec/spec-sfs2.0/benchspec/
162.nfsv2

                         7)  Shell Escape
                         8)  Continue to view fixed parameters
                         9)  Save RC File
                        10)  Return to Main Menu

                            Select Setting :

4.1.7  Viewing Existing Results:

Once there are existing summary files, the user may view them within the SFS tools.

        Enter whether you want to (r)un, re(c)ompile, (e)dit an .rc file,
        (v)iew results, (a)rchive results, (p)revious question, (q)uit ... v

        Current SUFFIX=

         List of Suffixes For Which Results Are Available:
         -----------------------------------------------------------

        test_2disk      short_v2_tcp_2dsk       test_v3_tcp

        Enter suffix string for the results you wish to view: test_2disk

        Searching for Results file
           /local_mnt2/spec/spec-sfs2.0/benchspec/162.nfsv2/result/sfssum.test_2disk

                   200     200     3.5    60091  300 3 U    2028208   2  7  0  0
                   400     400     3.9   120054  300 3 U    4056052   2  7  0  0
                   600     598     4.3   179507  300 3 U    6084260   2  7  0  0
                   800     801     5.0   231226  288 3 U    8112104   2  7  0  0
                  1000     999     5.8   271714  272 3 U   10140312   2  7  0  0

4.2  Advanced Mode

The following selection will summarize the Advance Mode user tools. The user will be presented with the functions
that the Advanced Mode Tools offer. The following example shows the Advanced More Main Menu structure.

   Example of the Advanced Mode Main Menu



SFS 2.0 Documentation Version 1.0 Tools Interface

34 SFS 2.0

        Main Menu : 162.V2 Benchmark

         1) View/Change/Create M.vendor file
         2) View/Change/Create C.vendor file
         3) View/Change/Create RC file
         4) Remote Client Setup Utilities
         5) Clean SFS Source files
         6) Start Compilation
         7) Start Run
         8) View Results
         9) Archive Results
        10) Shell Escape
        11) Exit 162.V2 Benchmark

                          Choice :

4.2.1  Wrapper files & Compiling the Benchmark Programs

After initially installing SPECsfs on the load generators, the user must compile the benchmark on each of the load
generators. Prior to compilation, it is important for the user to select the appropriate Makefile wrappers and Com-
mand Wrappers. The Makefile wrappers contain specific vendor compiler options and flags needed during the compi-
lation process. The Command wrappers contain the vendor specific command paths and commands needed for the
remote utilities.

Wrapper file modification and compiling of the benchmark programs need to be done on all clients including the
Prime-Client. The “Choice” of “1” in the above menu gives a listing of all the vendor specific makefile-wrappers cur-
rently available on the CD. The user can look into any vendor wrapper file and modify it suitably and store the file on
the system under the same or a different name and use it to compile the benchmark programs. These wrappers are all
named with a “M.” prefix.

For example, the Digital Equipment Corporation vendor wrapper is named “M.dec_unix”.



SFS 2.0 35

SFS 2.0 Documentation Version 1.0 Tools Interface

   Example of the M.vendor Wrapper Prompts

        List of Available M.vendor wrapper Files
        ------------------------------------------

        att     compaq  dec_unix dgc
        hpux10  hpux9   ibm     ingr
        moto    sgi     sni     solaris2
        sunos4  unicos  unisys  unixware
        vendor  xps4.2

        Current M.vendor file is: M.dec_unix
        Enter only vendor part of M.vendor File name.
        Hit Return if using M.dec_unix :

        Checking Wrapper file .......

                 To Continue Please Press The <RETURN> key:
                 Thank You!

             Current Settings

         1)  MACHID          ->  dec_osf
         2)  C COMPILER      ->  /bin/cc
         3)  C OPTIONS       ->  -O
         4)  C FLAGS         ->
         5)  LOAD FLAGS      ->
         6)  EXTR CFLAGS     ->
         7)  EXTR LDFLAGS    ->
         8)  LIBS            -> -lm
         9)  EXTRA LIBS      ->
        10)  OSTYPE          -> -DOSF1
        11)  SETPGRP CALL    ->
        12)  RESVPORT_MOUNT  ->

        13)  Shell Escape
        14)  Save Wrapper File
        15)  Return to Main Menu

            Select Setting :

Each item in the above menu is user definable and it is good practice to “save” the wrapper file under a different name
if any parameter is modified.

After exiting this submenu, if the user has not yet compiled the benchmark or the user has modified the M.vendor file
since the last compilation, the user is encouraged to select option 6, Start Compilation, of the main menu to compile
the benchmark.



SFS 2.0 Documentation Version 1.0 Tools Interface

36 SFS 2.0

Compilation must be done on each client, or on each location that is NFS mounted by a client, before the run is
started.

At the end of compilation, the tool sets “root” ownership on the “sfs” and “sfs3” executables so that it can perform
port binding to a privileged port as shown below, which may necessitate the typing of root password. If requested,
please enter the password required by the su(1) command on your system. If you do not have the root password, hit
RETURN and SPECsfs97 will be installed without SUID root; you will need to chown it to root and chmod it to
SUID by other means, e.g. asking your system administrator.

   Example of the C.vendor Wrapper Prompts

        The following is a list of the available C.vendor wrapper files.
        ----------------------------------------------------------------
        C.sgi   C.hpux10        C.sni   C.dec_unix
        C.unixware      C.vendor        C.unicos        C.solaris2
        C.sunos4        C.intel C.hpux9 C.ibm
        C.att

              Enter only vendor part of M.vendor File name
              Hit Return if using C.dec_unix:

        Current C.vendor Parameter Settings

        1)  PASSWD_FILE        -> /etc/passwd
        2)  FSTAB_FILE         -> /etc/fstab
        3)  GROUP_FILE         -> /etc/group
        4)  HOSTNAME_CMD       -> hostname
        5)  RSH_CMD            -> rsh
        6)  SHELL              -> /bin/sh
        7)  AWK_CMD            -> awk
        8)  PS_CMD             -> ps ax
        9)  ECHO               -> echo
       10)  NONL               ->

                11)  Shell Escape
                12)  Save C.vendor File
                13)  Return to Main Menu

                    Select Setting :

Each item in the above menu is user definable and it is good practice to “save” the wrapper file under a different name
if any parameter is modified.

4.2.2  Setting up the SPECsfs Parameters

The SPECsfs benchmark run time parameters can be specified by selecting option 3 of the main menu and following
the sub-menu as shown here.



SFS 2.0 37

SFS 2.0 Documentation Version 1.0 Tools Interface

Note that the CLIENTS, LOAD, MNT_POINTS, PROC parameters MUST be supplied in order to run the bench-
mark. When specifying these values it is important to remember these rules:

1. The CLIENT parameter must have at least one client specified.

2. The LOAD parameter is the total load applied to the server. The benchmark will break the load down on a load
generator basis.

3. The MNT_POINTS must be specified in one of these two ways:

a.     svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4

b.     mount_point_file_name (each line represents the mount points for one cli-
ent. The mount_point_file_name looks like the following:

            cl1 svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4

            cl2 svr:/mnt5 svr:/mnt6 svr:/mnt7 svr:/mnt8

4. The PROC parameter must be equal to the number of mount points specified on a per client basis.

Warning:  The _rc files may be hand edited, however, any error introduced into the file may cause the tool to abort.



SFS 2.0 Documentation Version 1.0 Tools Interface

38 SFS 2.0

   Example of Viewing the _rc file

       List of Available RC  Files That End With _rc Latest First
       -----------------------------------------------------------

             sfs1_rc      sfs2_rc      sfs_rc

                    Enter your RC File name

                    Hit Return if using original sfs_rc templates

                           with default values

                    Else pick up an “ _rc” file from above list: sfs1_rc

                           Checking RC file .......

      Current RC Parameter Settings (Page 1)

      Default values are in parentheses.

              1)  LOAD               -> 100 200 300 400 500
              2)  BIOD_MAX_WRITES    -> 2
              3)  BIOD_MAX_READS     -> 2
              4)  NFS_VERSION        ->
              5)  NUM_RUNS           -> 1
              6)  INCR_LOAD          -> 0
              7)  CLIENTS            -> cl1 cl2
              8)  MNT_POINTS         ->
              9)  PROCS              -> 4
             10)  TCP                -> svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4

                  11)  Shell Escape
                  12)  Continue to view additional modifiable parameters
                  13)  Save RC File
                  14)  Return to Main Menu

                       Select Setting :

   Example of the Modifying the Client Information



SFS 2.0 39

SFS 2.0 Documentation Version 1.0 Tools Interface

      Current RC Parameter Settings (Page 1)

      Default values are in parentheses.

              1)  LOAD               -> 100 200 300 400 500
              2)  BIOD_MAX_WRITES    -> 2
              3)  BIOD_MAX_READS     -> 2
              4)  NFS_VERSION        ->
              5)  NUM_RUNS           -> 1
              6)  INCR_LOAD          -> 0
              7)  CLIENTS            -> cl1 cl2
              8)  MNT_POINTS         ->
              9)  PROCS              -> 4
             10)  TCP                -> svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4

                  11)  Shell Escape
                  12)  Continue to view additional modifiable parameters
                  13)  Save RC File
                  14)  Return to Main Menu

                       Select Setting : 7

Clients: cl1 cl2

 To retain this value type <RETURN>

 For null value type <space> & <RETURN>

        Enter new Clients value : mach1 mach2

      Current RC Parameter Settings (Page 1)

      Default values are in parentheses.

              1)  LOAD               -> 100 200 300 400 500
              2)  BIOD_MAX_WRITES    -> 2
              3)  BIOD_MAX_READS     -> 2
              4)  NFS_VERSION        ->
              5)  NUM_RUNS           -> 1
              6)  INCR_LOAD          -> 0
              7)  CLIENTS            -> mach1 mach2
              8)  MNT_POINTS         ->
              9)  PROCS              -> 4
             10)  TCP                -> svr:/mnt1 svr:/mnt2 svr:/mnt3 svr:/mnt4

                  11)  Shell Escape
                  12)  Continue to view additional modifiable parameters
                  13)  Save RC File
                  14)  Return to Main Menu

                       Select Setting :



SFS 2.0 Documentation Version 1.0 Tools Interface

40 SFS 2.0

4.3  SFS Remote Client Setup Utilities

If you want “runsfs” to establish your clients as SFS load generators, choose option 4, “Remote Client Setup Utili-
ties”, from the main menu.

   Example of the Remote Client Setup Utility Submenu

      Sub Menu : Remote Client Setup Utilities

      1) Copy SFS source to Remote Client(s)

      2) Shell Escape

      3) Exit to Main Menu

                Choice :

You may select task 1 to perform the steps necessary to setup the Remote Client(s). The “runsfs” command will
prompt for the vendor and the _rc file. The tool will offer to set up a “spec” user and prompt for “Y” or “N”.

4.4  SFS Run-Prerequisites, Validation & Execution

The prerequisites for running the SFS benchmark are prompted when “runsfs” command is used. They are listed here.

                PREREQUISITES TO RUNNING THE 162.V2 BENCHMARK

The following prerequisite list should be checked before starting a benchmark run.

1. The user must create a “spec” account on all SFS load generator machines with an identical home directory path,
for example “/usr/spec/sfs”.

2. Check that the “.rhosts” file on each SFS load generator contains the HOSTNAME of the prime SFS load genera-
tor.

After the above prerequisites are satisfied, the SFS benchmark can be run by choosing option 7 from the main menu.
The “Run” option prompt the user to validate the benchmark on the server. Validation must be done to prior to gener-
ating a valid SFS result. After the server passes validation, the menu reminds the user about “newfs”ing the shared
server file partitions to assure that all data files are written afresh on the server disks.

Note:  The “runsfs” script will not actually perform newfs’s. You must escape the program and perform them manu-
ally at this time.

If a run fails for some reason, the tool will advise you of this and possibly direct you where you might be able to find
more information.   See Section 11, “General Debug Information” for more about tracking down problems with
SPECsfs.

Hint:  The most common problem is usually that file server filesystems are not being correctly mounted on the clients.



SFS 2.0 41

SFS 2.0 Documentation Version 1.0 Tools Interface

Reminder:  The benchmark “run” may take many hours to complete depending upon how many data points were
requested. Also, some failures may take more than an hour to manifest themselves.

   Example of a Benchmark Run



SFS 2.0 Documentation Version 1.0 Tools Interface

42 SFS 2.0

   Assume that the user has already selected the M.vendor file, the C.vendor file, compiled the benchmark, and
selected the _rc file.

        Main Menu : 162.V2 Benchmark

         1) View/Change/Create M.vendor file
         2) View/Change/Create C.vendor file
         3) View/Change/Create RC file
         4) Remote Client Setup Utilities
         5) Clean SFS Source files
         6) Start Compilation
         7) Start Run
         8) View Results
         9) Archive Results
        10) Shell Escape
        11) Exit 162.V2 Benchmark

                          Choice : 7

  Using sfs1_rc as the RC file

        Enter suffix for log files, results summary etc
            (Do not exceed 3 chars if there is a 14 character limit): k7

        The Results from this run will be stored in
            /spec_sfs/benchspec/162.nfsv2/result/sfssum.k7

>> Do you want to run the VALIDATION test ?
        Answer y or n (default is y): y

        >>>>> STARTED LADDIS VALIDATION ON 08/11/97  AT 21:46:46 <<<<<

        Laddis Validation completed

>> Prior to running SFS for valid publication data, all targeted
>> file systems on the server are required to be cleaned (newfs’ed).

   Have all targeted server file systems been NEWFS’ed ?
                        Answer y or n (default is y):
        >>>>> STARTED SFS RUNS ON 08/11/97  AT 21:46:46 <<<<<

    Mon Aug 11 21:43:46 EDT 1997
     Executing run 1 of 10 ...  done
    Mon Aug 11 21:54:46 EDT 1997
     Executing run 2 of 10 ...  done
    Mon Aug 11 22:06:18 EDT 1997
     Executing run 3 of 10 ...  done



SFS 2.0 43

SFS 2.0 Documentation Version 1.0 Tools Interface

    Mon Aug 11 22:18:17 EDT 1997
     Executing run 4 of 10 ...  done
    Mon Aug 11 22:30:41 EDT 1997
     Executing run 5 of 10 ...  done
    Mon Aug 11 22:43:33 EDT 1997
     Executing run 6 of 10 ...  done
    Mon Aug 11 22:56:55 EDT 1997
     Executing run 7 of 10 ...  done
    Mon Aug 11 23:10:40 EDT 1997
     Executing run 8 of 10 ...  done
    Mon Aug 11 23:24:49 EDT 1997
      Executing run 9 of 10 ...  done
    Mon Aug 11 23:39:23 EDT 1997
      Executing run 10 of 10 ...  done

        The results & log files are in /users/sfs/spec-sfs2.0/benchspec/162.nfsv2/result

                 To Continue Please Press The <RETURN> key:

4.5  Viewing the results and archiving

Once there are existing summary files, the user may view them within the SFS tools.

   Example of the Viewing Results

        Current SUFFIX=k7

        List of Suffixes For Which Results Are Available:
        -------------------------------------------------
        k1 k2 k3 k4 k5 k6 k7

        Enter suffix string for the results you wish to view:
                                Press <RETURN> for k2:

        Searching for Results file
              /spec_sfs/spec-sfs2.0/benchspec/162.nfsv2/result/sfssum.k2 ...

        Enter suffix string for the results you wish to view: test_2disk

         Searching for Results file
                /spec_sfs/spec-sfs2.0/benchspec/162.nfsv2/result/sfssum.k2

             200     200     3.5    60091  300 3 U    2028208   2  7  0  0
             400     400     3.9   120054  300 3 U    4056052   2  7  0  0
             600     598     4.3   179507  300 3 U    6084260   2  7  0  0
             800     801     5.0   231226  288 3 U    8112104   2  7  0  0
            1000     999     5.8   271714  272 3 U   10140312   2  7  0  0



SFS 2.0 Documentation Version 1.0 Tools Interface

44 SFS 2.0

4.6  Limitations of the Tools

The user interfaces explained above may not be able to help the user much in case of problems, especially those
related to the network layers. Many problems may be eliminated if the user follows the prerequisites mentioned in the
“PREREQUISITIES” menu. (A list of key prerequisites is displayed when first running “runsfs”) Other problems
related to “NFS” or “RPC” operations should be handled outside the tools.

More experienced users may find it more effective to interact more directly with the benchmark as described below.

5.0  Compiling and Running SFS without the menu-driven tools

For the more experienced user, the SPECsfs benchmark may be run without using the above-described tools. The fol-
lowing section is a quick summary of this process.

1. As with the tools, the user must first set up the SPEC environmental variables as indicated at the beginning of this
section.

    cd to the top level spec directory
    source sfsenv or . ./sfsenv

2. The user must then move to the parent directory to compile the benchmark.

    cd $SPEC/benchspec/162.nfsv2

The various vendor wrapper files will be found in this directory. To compile, you need to identify the appropriate
vendor wrapper for the load generator system(s) being used. An ls M.* will list the available vendor wrappers.
The programs need to be compiled using one of the given wrapper files, (example: M.att) or one that was created
using the given M.<vendor> wrapper files. The command to compile the source programs is:

     make -f M.wrappers/M.<vendor>

The root password may be required in order to set the setuid bit. The executables and other necessary files are cop-
ied onto the $SPEC/benchspec/162.nfsv2/result directory by this command.

3. The benchmark can then be run from this directory using the following command.

     sfs_mgr -r <sfs_rc file> -s <suffix>”

The “-s” option in the command line is required only when a tag is needed to identify the SFS run log files and the
result files. Use of tags to differentiate results is highly recommended. Note that on 14 character name file sys-
tems, the tag should not be more than 3 characters long. Long name file systems are not so constrained. The _rc
file (which may have any name ending in _rc) supplies the parameters to the benchmark.

To obtain a valid SFS run, the user should run the validation suite. One of the following two commands should be
used. Note the “-v” option indicates the level of validation to be done. In this example level 2 validation will be done.



SFS 2.0 45

SFS 2.0 Documentation Version 1.0 Tools Interface

    sfs_mgr -v 2 -r <sfs_rc file> -s <suffix>
               or
    sfs_mgr -v 2 -r <sfs_rc file>



SFS 2.0 Documentation Version 1.0 Tools Interface

46 SFS 2.0



SFS 2.0 47

SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

CHAPTER 4 SPECsfs97 Run and Disclosure
Rules

1.0  Introduction

This document provides the rules to follow for all submitted, reported, published and publicly disclosed runs of the
SPEC System File Server (SFS) 2.0 Benchmark according to the norms specified and approved by the SPEC SFS sub
Steering Committee (SFSSC). These run rules also form the basis for determining which server hardware and soft-
ware features are allowed for benchmark execution and result publication.

This document should be considered the complete guide when addressing the issues of benchmark and NFS server
configuration requirements for the correct execution of the benchmark. The only other documents that should be con-
sidered are potential clarifications or interpretations of these Run and Disclosure Rules. These potential interpreta-
tions should only be accepted if they originate from and are approved by the SFSSC.

These run and disclosure rules are meant to provide the standard by which customers can compare and contrast NFS
server performance. It is the intent of the SFSSC to set a reasonable standard for benchmark execution and disclosure
of results so customers are presented with enough information about the disclosed configuration to potentially repro-
duce configurations and their corresponding results.

As a requirement of the license of the benchmark, these run and disclosure rules must be followed. If the user of the
SFS 2.0 benchmark suite does not adhere to the rules set forth herein, SPEC may choose to terminate the license with
the user. Please refer to the SPEC SFS 2.0 Benchmark license for complete details of the user’s responsibilities.

For this document, it is assumed the reader is familiar with the SFS 2.0 benchmark through the use of SFS 1.1 and/or
the reading of the user documentation for SFS 2.0.

2.0  Definitions

• Benchmark refers to the SPEC SFS 2.0 release of the source code and corresponding work loads defined for the
measurement of NFS version 2 and NFS version 3 servers.

• Disclosure or Disclosing refers to the act of distributing results obtained by the execution of thebenchmark and its
corresponding work loads. This includes but is not limited to the disclosure to SPEC for inclusion in its electronic
medium or paper newsletter or the electronic or paper publication by other organizations or individuals. This does
not include the disclosure of results between the user of the benchmark and a second party where there exists a
confidential disclosure agreement between the two parties relating to the benchmark results.

• Publication refers to the use by SPEC for inclusion in its electronic medium or paper newsletter or other SPEC
printed content.



SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

48 SFS 2.0

3.0  Overview of SPEC SFS Release 2.0 Run Rules

The general philosophy behind this set of rules for benchmark execution is to ensure that benchmark results can be
reproduced if desired.

1. All data published must be gathered from benchmark execution conducted according to the SFS Release 2.0 Run
and Disclosure Rules.

2. Benchmark execution must complete in its entirety and normally without benchmark failure or benchmark error
messages.

3. The complete hardware, software, and network configuration used for the benchmark execution must be pub-
lished. This includes any special server hardware, client hardware or software features.

4. Use of software features which invoke, generate or use software designed specifically for the benchmark is not
allowed. Configuration options chosen for benchmark execution should be options that would be generally recom-
mended for the customer.

5. The system, including all hardware, software, and network components must be available for general customer
shipment withinsix months of the date of benchmark result publication. If the system tested was not generally
available on date tested, the generally available system’s performance must meet or exceed the system tested for
the initially reported performance. If generally available system does not meet the reported performance, the
result publisher must publish the lower performing results. Lower results are acceptable if the margin of error for
throughput is less than one percent and the margin of error for response time is less than five percent or 1 millisec-
ond which ever is greater.

4.0  Benchmark Software Requirements

4.1  Server and Client Software

In addition to the base operating system, the server will need either the NFS Version 2 or NFS Version 3 software.
The clients used for testing will need an ANSI-conformant C compiler (if benchmark compilation is required), a
bourne shell, a remote shell, a copy of the benchmark and a network interface.

All of the server software components are required to be generally available within six months of result publication.
Use of benchmark specific software components on either the clients or server are not allowed.

4.2  Vendor Makefile Wrappers

Included in this benchmark release are pre-compiled versions of the benchmark for various operating systems at vari-
ous levels. If it becomes necessary for the user to compile a version of the benchmark source for testing, generic
makefiles are provided in the benchmark source directories.

Typically a vendor makefile wrapper (M.vendor) is used in conjunction with the generic makefile for benchmark
compilation. The makefiles may be modified or supplemented in a performance neutral fashion to facilitate the com-
pilation and execution of the benchmark on operating systems not included within the benchmark distribution.

It should be noted that as of SFS 2.0, the client no longer needs NFS client software present or configured for success-
ful execution of the benchmark.

The following is a list of the vendors and their respective operating system levels for which the benchmark has been
pre-compiled and included with the benchmark distribution.

• Digital Equipment Corporation



SFS 2.0 49

SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

Digital UNIX 3.0 and later

• Hewlet-Packard Company

HP-UX 10.0.1 and later

• IBM Corporation

AIX version 4.1 and later

• Silicon Graphics

IRIX (?)

• Sun Microsystems, Inc.

Solaris 2.4 and later

4.3  Benchmark Source Code Changes

SPEC permits minimal performance-neutral portability changes of the benchmark source. When benchmark source
changes are made, an enumeration of the modifications and the specific source changes must be submitted to SPEC
prior to result publication. All modifications must be reviewed and deemedperformance neutral by the SFSSC.
Results requiring such modifications can not be published until such time that the SFSSC accepts the modifications as
performance neutral.

Source code changes required for standards compliance should be reported to SPEC. Appropriate standards docu-
ments should be cited. SPEC may consider incorporating such changes in future releases. Whenever possible, SPEC
will strive to develop and enhance the benchmark to be standards-compliant.

Portability changes will generally be allowed if, without the modification, the:

1. Benchmark source will not compile,

2. Benchmark does not execute, or,

3. Benchmark produces results which are marked INVALID

5.0  Protocol and Server Configuration and Network Requirements

For a benchmark result to be eligible for disclosure, all items identified in the following sections must be true.

5.1  NFS protocol requirements
1. For NFS Version 2, the server adheres to the protocol specification and in particular the requirement that for NFS

write operations the NFS server must not reply to the NFS client before any modified file system data or metadata
are written to stable storage.

2. For NFS Version 3, the server adheres to the protocol specification. In particular the requirement that forSTABLE
write requests andCOMMIT operations the NFS server must not reply to the NFS client before any modified file
system data or metadata are written to stable storage for that specific or related operation. See RFC 1813, NFSv3
protocol specification for a definition of STABLE and COMMIT for NFS write requests.

3. For NFS Version 3, operations which are specified to return wcc data must, in all cases, return TRUE and the cor-
rect attribute data. Those operations are:

a.     SETATTR

b.     READLINK



SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

50 SFS 2.0

c.     CREATE

d.     MKDIR

e.     SYMLINK

f.     MKNOD

g.     REMOVE

h.     RMDIR

i.     RENAME

j.     LINK

4. The server must pass the benchmark validation for the NFS protocol being tested.

5. When UDP is the network transport, UDP checksums must be calculated and verified for all NFS request and
reply messages. In other words, checksums must be enabled on both the client and server.

5.2  Server configuration requirements
1. The server does not use any type of RAM disk or other type of file system which does not survive server failure

and reboot.

2. The server configuration follows the uniform access rules for the clients’ access to the server file systems.

5.3  SPEC’s Description of Stable Storage for SFS 2.0

In section “NFS protocol requirements” on page 49, the termstable storage is used. For clarification, the following
references and further definition is provided and must be followed for results to be disclosed.

5.3.1  Protocol definition of stable storage and its use

RFC 1094, NFS: Network File System, of March 1989, page 3 states the following concerning the NFS protocol:

All of the procedures in the NFS protocol are assumed to be synchronous.   When
a procedure returns to the client, the client can assume that the operation has
completed and any data associated with the request is now on stable storage. For
example, a client WRITE request may cause the server to update data blocks,
filesystem information blocks (such as indirect blocks), and file attribute infor-
mation (size and modify times).   When the WRITE returns to the client, it can
assume that the write is safe, even in case of a server crash, and it can discard the
data written. This is a very important part of the statelessness of the server. If the
server waited to flush data from remote requests, the client would have to save
those requests so that it could resend them in case of a server crash.

5.3.2  Stable storage further defined

SPEC has further clarification of this definition to resolve any potential ambiguity. For the purposes of the bench-
mark, SPEC defines stable storage in terms of the following operational description:

NFS servers must be able to recover without data loss from multiple power fail-
ures (including cascading power failures, i.e., several power failures in quick suc-
cession), operating system failures, and hardware failure of components (e.g.,
CPU) other than the storage medium itself (e.g., disk, non-volatile RAM). At any
point where the data can be cached, after response to the client, there must be a



SFS 2.0 51

SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

mechanism to ensure the cached data survives server failure.

5.3.3  Examples of stable storage

1. Media commit of data, i.e., the modified data has been successfully written to the disk media, for example, the
disk platter.

2. An immediate reply disk drive with battery-backed on-drive intermediate storage or uninterruptible power system.
(UPS)

3. Server commit of data with battery-backed intermediate storage and recovery software.

4. Cache commit with uninterruptible power system (UPS) and recovery software.

5.3.4  Examples which are not considered stable storage

1. An immediate reply disk drive without battery-backed on-drive intermediate storage or uninterruptible power sys-
tem. (UPS)

2. Cache commit without both uninterruptible power system (UPS) and recovery software.

3. Server commit of data without battery-backed intermediate storage & memory.

5.4  SPEC’s Description of Uniform Access for SFS 2.0

In “Server configuration requirements” on page 50 the termuniform access is used to define a requirement. This sec-
tion provides a complete description and examples. The NFS server configuration for the benchmark execution
should provide uniform file system access to the clients being used.

SPEC intends that for every network, all file systems should be accessed by all
clients uniformly.

Uniform access is meant to eliminate potential exploitation of any partionable aspect of the benchmark, particularly
when reporting cluster results. It is recognized that servers vary as to exposing elements such as processor, disk con-
troller or disk to load generators remotely accessing file systems. The algorithm presented below is the preferred
mechanism when determining file system access for benchmark configuration. This method should prevent biased
configurations for benchmark execution.

5.4.1  Uniform access algorithm

Once the number of load generating processes has been determined, then load generator mount points should distrib-
ute file systems in the following manner.

Using a round-robin assignment, select the next file system to mount by selecting from the following collection, vary-
ing first (1), then (2), then (3), and so on:

1. next network,

2. next cluster processor (if clustered system),

3. other controllers in the path from the network, to the file system,

4. file system.

Note that this list may not be complete for system components which should be considered for uniform access. Some
server architectures may have other major components. In general, components should be included so all data paths
are included within the system.



SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

52 SFS 2.0

5.4.2  Examples of uniform access

1. n-level symmetric multiprocessors (include uniprocessor, i.e. n=1).

k.     Select next load-generating process for a client.

l.     Select next network accessed by that client.

m.     Select next network controller on the network.

n.     Select next disk controller

o.     Select next file system.

2. Cluster system.

a.     Select next load-generating process for a client.

b.     Select next network accessed by that client.

c.     Select next cluster processor on the selected network.

d.     Select next network controller on cluster controller.

e.     Select next disk controller on cluster controller.

f.     Select next file system on controller.

3. Functional Multiprocessing.

a.     Select next load-generating process for a client.

b.     Select next network accessed by that client.

c.     Select network processor.

d.     Select next file processor.

e.     Select next storage processor.

f.     Select next file system.

5.5  Network configuration requirements

The network(s) used for valid benchmark execution must be isolated networks. Results obtained on production net-
works are invalid as they will most likely not be reproducible. Furthermore, the benchmark may fail to correctly con-
verge to the requested load rate and behave erratically due to varying ambient load on the network.

6.0  Benchmark Execution Requirements

This section details the requirements governing how the benchmark is to be executed for the purpose of generating
results for disclosure.

6.1  Server File System Creation and Configuration

As stated in section 5.3, ”SPEC’s Description of Stable Storage for SFS 2.0”, on page 50, the NFS server’s target file
systems, their configuration and underlying physical medium used for benchmark execution must follow the stable
storage requirements.

At the start of each benchmark run, before the first in a series of requested NFS load levels is generated, the NFS
server’s target filesystems must be initialized to the state of a newly-created, empty filesystem. For UNIX-based sys-



SFS 2.0 53

SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

tems, themkfs (make filesystem) ornewfs (new filesystem) command would be used for each target filesystem. For
non-UNIX-based systems, a semantic equivalent to themkfs or newfs command must be used.

6.2  Data Point Specification for Results Disclosure

The result of benchmark execution is a set of NFS throughput / response time data points for the server under test
which defines a performance curve. The measurement of all data points used to define this performance curve must be
made within a single benchmark run, starting with the lowest requested NFS load level and proceeding to the highest
requested NFS load level.

Published benchmark results must include at least 10 data points uniformly distributed between zero and the maxi-
mum achieved throughput (excluding zero ops/sec and including the maximum measured throughput), except as
noted below. For example in a 10-point run the first uniformly spaced data points would be at 10%, 20%, and 30% of
the maximum throughput. In a 25-point run the first uniformly spaced data points would be at 4%, 8%, and 12% of
the maximum throughput.

Additional data points may also be included within the above range: some of these data points may be omitted in the
disclosure. However, the omitted data points must correspond to the right-most or highest requested throughput. Data
points may not be omitted from the beginning or middle of the requested data points.

Any invalid data points will invalidate the entire run unless they are at or below 25% of the maximum measured
throughput. All data points at or below the maximum reported throughput must be reported. Invalid data points must
be submitted but will not appear on the disclosure page graph. (The requested load associated with the invalid points
will appear on the disclosure reporting table, however, the throughput and response time will be omitted.)

No server or testbed configuration changes, server reboots, or file system initialization (e.g., “newfs”) are allowed
during the execution of the benchmark or between data point collection.

If any requested NFS load level or data point must be rerun for any reason, the entire benchmark execution must be
restarted, i.e., the server’s filesystems must be initialized and the series of requested NFS load levels repeated in
whole.

6.3  Maximum response time for Results Disclosure

For each data point measured, there will be the throughput and corresponding response time. For a data point to be
eligible for results disclosure the response time reported by the benchmark must not exceed 40 milliseconds.

6.4  Over all response time calculation

The overall response time is an indicator of how quickly the system under test responds to NFS operations over the
entire range of the tested load. The overall response time is a measure of how the system will respond under an aver-
age load. Mathematically, the value is derived by calculating the area under the curve divided by the peak throughput.
Below the first valid data point is assumed to have a constant response time equal to that of the first data point.

6.5  Benchmark Modifiable Parameters

The benchmark has a number of parameters which are configurable. This parameter modification is specified with the
use of theRC file on the prime client. For benchmark execution for results to be disclosed, there is a subset of param-
eters which may be modified. Parameters outside of the set specified below may not be modified for a publishable
benchmark result.



SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

54 SFS 2.0

Parameters which may be modified for benchmark execution:

6.5.1 LOAD

Used to specify the data points to be collected by the benchmark. List must increase in value and must represent a
uniform distribution.

6.5.2 INCR_LOAD

If the LOAD  has a single value, this parameter is used to specify the increment to increase the load for successive
data points.

6.5.3 NUM_RUNS

If INCR_LOAD  is used, this parameter is used to specify the number of data points to gather. For a valid benchmark
execution, this value must be greater than or equal to 10.

6.5.4 PROCS

This parameter specifies the number of load generating processes to be used on each load generating client. There is a
minimum number of eight processes for each network used in the benchmark configuration. For example, if the
server being measured has two network interfaces and there are two clients on each network, then each client would
require a minimum of four processes to be used and this parameter would have a value of 4.

6.5.5 CLIENTS

CLIENTS  is used to specify the host names of the clients used for generating the NFS load points.

6.5.6 MNT_POINTS

List of file systems to be used for the benchmark execution. This list should be generated to comply to the uniform
access requirements defined in “SPEC’s Description of Uniform Access for SFS 2.0” on page 51.

6.5.7 BIOD_MAX_WRITES

Specifies the number of outstanding or async writes that the benchmark will generate per benchmark process. The
minimum number is two and there is no maximum number.

6.5.8 BIOD_MAX_READS

Specifies the number of outstanding or async reads that the benchmark will generate per benchmark process. The
minimum number is two and there is no maximum number.

6.5.9 TCP

Specifies if TCP should be used as the transport mechanism to contact the NFS server for all generated transactions.
Default is to use UDP, if this option is set to “on” then TCP will be used.



SFS 2.0 55

SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

6.5.10 NFS_VERSION

Specifies the version of the NFS protocol to use for benchmark execution. The default is version 2 and if “3” is spec-
ified, NFS version 3 will be used for the benchmark execution.

6.5.11 SFS_USER

The user account name which is configured on all clients to be used for the benchmark execution. Each client should
be configured to allow this user execution of the benchmark.

6.5.12 SFS_DIR

Path name which specifies the location of the benchmark executables. Each client should be configured to use the
same path.

6.5.13 WORK_DIR

Path name where all benchmark results are placed. Each client should be configured to have this path available.

6.5.14 PRIME_MON_SCRIPT

Name of a shell script or other executable program which will be invoked to control any external programs. These
external programs must be performance neutral. If this option is used, the executable used must be disclosed.

6.5.15 PRIME_MON_ARGS

Arguments which are passed to the executable specified inPRIME_MON_SCRIPT .

6.5.16 RSH

The default for this option is thersh command. For those operating environments which do not usersh for remote
execution, this option should be set to the appropriate remote execution program. This value applies to the prime cli-
ent.

6.6  Valid methods for benchmark execution

There are two mechanisms which can be used for obtaining valid benchmark executions.

The first is the use of thesfs_mgr script. For those familiar with the benchmark, this shell script can be used in com-
bination with anRC file for benchmark execution.

The second is to use therunsfs script. This script is a menu based utility that will provide a helping hand to the user
that is somewhat unfamiliar with the benchmark and its execution.

7.0  Results Disclosure

Since it is the intent of these run and disclosure rules to provide the standard by which customers can compare and
contrast NFS server performance, it is important to provide all the pertinent information about the system tested so



SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

56 SFS 2.0

this intent can be met. The following describes what is required for disclosure of benchmark results. It is recognized
that all of the following information can not be provided with each reference to benchmark results. Because of this,
there is a minimum amount of information that must be always be present and upon request, the party responsible for
disclosing the benchmark results must provide afull disclosure of the benchmark configuration. Note that SPEC pub-
lication requires a full disclosure.

7.1  Benchmark metric or minimum disclosure

The following are the minimum allowable disclosure of benchmark results

1. “XXX SPECsfs97.v2 ops per second with an overall response time of YYY ms”

2. “XXX SPECsfs97.v3 ops per second with an overall response time of YYY ms”

The XXX would be replaced with the throughput value obtain from the right most data point of the throughput /
response time curve generated by the benchmark. The YYY would be replaced with the overall response time value
as generated by the benchmark.

7.2  Full disclosure of benchmark results

The information described in the following sections should be sufficient for reproduction of the disclosed benchmark
results. If additional information is needed, the party disclosing the results should provide the information as a note or
additional disclosure. All product names and model numbers and configurations should be complete such that the
information provided could be used to order the disclosed products.

7.2.1  Server hardware configuration

7.2.1.1  Server CPU configuration

1. Model Number

2. CPU (Name and Mhz or other identification)

3. Number of CPUs

4. Primary CPU Cache

5. Secondary CPU Cache

6. Other Cache

7. Memory

7.2.1.2  Server stable storage configuration

1. Number and type of disk controllers

2. Number and type of disks

3. Special disk or NVRAM products and brief description of their functionality

7.2.1.3  Server network configuration

1. Number and type of network controllers

2. Number of networks (potentially different if switch network involved or if network controller has more than one
physical connection)



SFS 2.0 57

SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

7.2.1.4  Other server hardware configuration

1. UPS

2. Other special hardware employed for tested configuration

7.2.2  Server software configuration

1. Operating system

2. Other software (i.e. device drivers, NFS products or software patches)

3. Buffer Cache size

4. Number of NFS daemons

5. Number of file systems

6. File system configuration and corresponding physical disks

7. Options used for file system creation/initialization

7.2.3  Client hardware configuration

1. Vendor name

2. Model number

3. Number and type of CPUs

4. Memory size

5. Type of network controller

7.2.4  Client software configuration

1. Operating system used

2. Compiler and version

3. Any non-standard compiler options

7.2.5  Network hardware configuration

These apply for configuration which use network components to build test configuration.

1. Switches and model numbers and option configurations

2. Bridges and model numbers

3. Hubs and model numbers

7.2.6  Benchmark configuration

1. File set size

2. Number of clients

3. Processes per client

4. biod_max_read parameter setting

5. biod_max_write parameter setting

6. Configuration of file systems as they are used by the clients



SFS 2.0 Documentation Version 1.0 SPECsfs97 Run and Disclosure Rules

58 SFS 2.0

7. UDP or TCP transport selection

7.2.7  Benchmark results

1. Throughput number and average response time for each data point used

2. Overall response time metric generated by the benchmark

7.2.8  Miscellaneous information

1. Benchmark license number

2. Licensee name who generate results

3. Location of licensee

4. Date tested

5. Date of hardware availability

6. Date of software availability



SFS 2.0 59

SFS 2.0 Documentation Version 1.0 Frequently Asked Questions

CHAPTER 5 Frequently Asked Questions

1.0  SPECsfs97 Benchmark Press Release
Question 1: What is SPEC SFS 2.0 and how does this benchmark compare to other network file system (NFS)

benchmarks?

Answer : SPEC SFS 2.0 is the latest version of the Standard Performance Evaluation Corp.'s benchmark that
measures NFS file server throughput and response time. It differs from other NFS benchmarks in
that it provides a standardized method for comparing performance across different vendor plat-
forms. The benchmark was written to be client-independent and vendor-neutral. Results are vali-
dated through peer review before publication on SPEC's public Web site <http://
www.specbench.org/osg/sfs97/> and in its hardcopy newsletter.

Question 2: Does this benchmark replace the SPEC SFS 1.1 suite?

Answer : Yes. Now that SPEC SFS 2.0 is available, SFS 1.1 licenses are no longer being sold. SPEC is pro-
viding a six-month transition period from the date of the SFS 2.0 announcement (December 19,
1997). During this period, SPEC will accept, review and publish results from both benchmark ver-
sions. After this period, results from SFS 1.1 will no longer be accepted by SPEC for publication.

Question 3: Can SPEC SFS 2.0 results be compared to SFS 1.1 results?

Answer : No. Although the benchmarks are similar, they cannot be compared, since SFS 2.0 uses a different
workload.

Question 4: What improvements have been made to SPEC SFS 2.0?

Answer : In addition to general code improvements, SPEC SFS 2.0 includes five major enhancements:

1. It measures NFS protocol version 3 results in addition to those from NFS protocol version 2.

2. It adds support for TCP; either TCP or UDP can be used as the network transport.

3. SPEC SFS 2.0's NFS operation mix more closely matches today's real-world NFS loads.

4. The benchmark distribution CD contains pre-compiled and tested binaries.

5. It has an improved interface to accommodate both accomplished and novice users.

Question 5: How was the SPEC SFS 2.0 workload determined?

Answer : The SPEC SFS 2.0 workload is based primarily on a survey of more than 1,000 servers in different
application environments. The survey found that 60 percent of these users have similar mixes of
NFS operations.

Question 6: What is the metric for SPEC SFS 2.0?

Answer : SPEC SFS 2.0 has two performance measurement metrics: SPECsfs97.v2 for NFS protocol version
2 and SPECsfs97.v3 for NFS protocol version 3. Both metrics include a throughput measure (in
operations per second) and an overall response time measure (the average response time per opera-
tion).

Question 7: Are the metrics for SPEC SFS 2.0 different than the metric for SFS 1.1?



SFS 2.0 Documentation Version 1.0 Frequently Asked Questions

60 SFS 2.0

Answer : Yes. SFS 2.0 removes the SFS 1.1 metric for response time at peak measured throughput and
replaces it with the overall response time and peak throughput. The larger the peak throughput the
better. The lower the overall response time the better. The overall response time is an indicator of
how quickly the system under test responds to NFS operations over the entire range of the tested
load. In real-world situations, servers are not run continuously at peak throughput, so peak response
time provides only minimal information. The overall response time is a measure of how the system
will respond under an average load. Mathematically, the value is derived by calculating the area
under the curve divided by the peak throughput. Below the first data point is assumed to have a con-
stant response time equal to that of the first data point.

Question 8: How widespread is NFS version 3?

Answer : NFS version 3 has been shipping on systems for more than three years and is available for most sys-
tems that support NFS version 2.

Question 9: What is the correlation between the TPC (Transaction Processing Council) benchmarks and SPEC
SFS 2.0?

Answer : There is no correlation; the benchmarks measure totally different aspects of system performance.

Question 10: Is SPEC SFS 2.0 a CPU- or I/O-intensive benchmark?

Answer : SPEC SFS 2.0 is a system-level benchmark that heavily exercises CPU, mass storage and network
components. The greatest emphasis is on I/O, especially as it relates to operating and file system
software. To obtain the best performance for a system running SFS 2.0, the vendor will typically
add additional hardware -- such as memory, disk controllers, disks, network controllers and buffer
cache -- to help alleviate I/O bottlenecks and to ensure that server CPUs are used fully.

Question 11: For what computing environment is SPEC SFS 2.0 designed?

Answer : The benchmark was developed for load-generating clients running in the UNIX environment. But
since the load-generating clients execute the benchmark code, SPEC SFS 2.0 can be used to test the
performance of any NFS server, regardless of the underlying environment. Porting is required,
however, for non-UNIX environments.

Question 12: Can users measure NFS performance for workloads other than the one provided within SPEC SFS
2.0?

Answer : Yes, users can measure their own workloads by making changes to the SPECsfs97 benchmark mix
parameters to reflect the new measurements. The SPEC SFS 2.0 User's Guide details how this can
be done. Workloads created by users cannot, however, be compared with SFS 2.0 results, nor can
they be published in any form, as specified within the SFS 2.0 license.

Question 13: To what extent is the server's measured performance within SPEC SFS 2.0 affected by the client's
performance?

Answer : SPEC has written SFS 2.0 to minimize the effect of client performance on SPECsfs97 results.

Question 14: Why have only three companies reported SPECsfs97 results in conjunction with this announce-
ment?

Answer : SPEC SFS 2.0 is a system-level benchmark that requires scheduling substantial resources for test-
ing. SPEC expects other member companies to report results in the near future.

Question 15: How does SPEC validate numbers that it publishes?

Answer : Results published on the SPEC Web site and in the SPEC newsletter have been reviewed by SPEC
members for compliance with the SFS 2.0 run and disclosure rules, but there is no monitoring
beyond that compliance check. The vendors that performed the tests and submitted the performance
numbers have sole responsibility for the results. SPEC is not responsible for any measurement or
publication errors.

Question 16: Are the reported SFS 2.0 configurations typical of systems sold by vendors?



SFS 2.0 61

SFS 2.0 Documentation Version 1.0 Frequently Asked Questions

Answer : Yes and no. They are similar to large server configurations, but the workload is heavier than that
found on smaller server configurations. SPEC has learned from experience that today's heavy work-
load is tomorrow's light workload. For some vendors, the configurations are typical of what they
see in real customer environments, particularly those incorporating high-end servers. For other ven-
dors, SFS 2.0 configurations might not be typical.

Question 17: Do the SFS 2.0 run and disclosure rules allow results for a clustered server?

Answer : Yes, cluster configurations are allowed as long as they conform strictly to the even distribution of
all resources as defined by the SFS 2.0 run and disclosure rules.

Question 18: Why do so few published results approach SPEC's response-time threshold cutoff of 40 millisec-
onds?

Answer : It is important to understand first that SPECsfs97 run rules do not require that the throughput curve
be carried out to 40 ms; they only state that the results cannot be reported for a response time higher
than 40 ms. There are several reasons why results do not approach the threshold cutoff. Optimally
configured servers often will achieve their maximum throughput at response times lower than the
cutoff. Additionally, some vendors emphasize maximum throughput while others concentrate on
fast response time. It does not indicate a problem with the results if the curve is not carried out to 40
ms, and those reviewing results should not try to predict what the throughput curve might be past
the reported point.

Question 19: Why was the response-time threshold reduced from 50 ms for SFS 1.1 to 40 ms for SFS 2.0?

Answer : The lower response-time threshold reflects advances in server technologies since the release of SFS
1.1 in January 1995.

Question 20: What resources are needed to run the SPEC SFS 2.0 benchmark?

Answer : In addition to a server, a test bed includes several clients and an appropriate number of networks.
The server must have enough memory, disks and network hardware to saturate the CPU. The test
bed requires at least one network and each network must have sufficient client capacity to saturate
the network(s). A minimum of 64 MB of memory is required for each client, although in most cases
128 MB is needed. Requirements are detailed in the SFS 2.0 User's Guide. To facilitate accuracy of
reported vendor results, SFS 2.0 includes an entire NFS implementation. Examples of typical load-
generating configurations can be found on the SPEC Web site: <http://www.specbench.org/osg/
sfs97/>.

Question 21: What is the estimated time needed to set up and run SPEC SFS 2.0?

Answer : Hardware setup and software installation time depend on the size of the server and the complexity
of the test beds. Many servers require large and complex test beds. The SFS 2.0 software installs
relatively quickly. A SPECsfs97 submission from a vendor includes at least 10 data points, with
each data point taking about 20 to 30 minutes to complete.

Question 22: What shared resources does SPEC SFS 2.0 use that might limit performance?

Answer : Shared resources that might limit performance include disk controllers, disks, network controllers,
network concentrators, network switches and clients.

Question 23: SPEC's CPU95 benchmark defines compiler optimization flags that can be used in testing. Does
SPEC SFS 2.0 set tuning parameters?

Answer : When submitting results for SPEC review, vendors are required to supply a description of all server
tuning parameters within the disclosure section of the reporting page.

Question 24: Can a RAM disk be used within a SPEC SFS 2.0 configuration?

Answer : SPEC enforces strict storage rules for stability. Generally, RAM disks do not meet these rules, since
they often cannot survive cascading failure-recovery requirements unless an uninterruptible power
supply (UPS) with long survival lines is used.



SFS 2.0 Documentation Version 1.0 Frequently Asked Questions

62 SFS 2.0

Question 25: How will the choice of networks affect SFS 2.0 results?

Answer : Different link types and even different implementations of the same link type might affect the mea-
sured performance -- for better or worse -- of a particular server. Consequently, the results mea-
sured by clients in these situations might vary as well.

Question 26: Is SPEC SFS 2.0 scalable with respect to CPU, cache, memory, disks, controllers and faster trans-
port media?

Answer : Yes, like SFS 1.1, the new benchmark is scalable as users migrate to faster technologies.

Question 27: What is the price of a SPEC SFS 2.0 license and when will it be available?

Answer : SPEC SFS 2.0 is available now on CD-ROM for $900. Contact the SPEC office: SPEC, 10754
Ambassador Dr., Ste. 201, Manassas, VA 20109; tel: 703-331-0180; fax: 703-331-0181; email:
info@specbench.org.

Question 28: How much is an upgrade from SFS 1.1 to SFS 2.0?

Answer : The upgrade is free for those who have purchased SFS 1.1 licenses within the last three months and
$300 for other SFS 1.1 licensees. Upgrades are available through the SPEC office.

Question 29: Can users get help in running SPEC SFS 2.0?

Answer : The majority of questions should be answered in the SPEC SFS 2.0 User's Guide. There is also use-
ful information on the SPEC Web site: <http://www.specbench.org/osg/sfs97/>.

2.0  Running the benchmark
Question 30: Do I need to measure NFSv2 _and_ NFSv3? TCP and UDP?

Answer : No. NFSv2 and NFSv3 are considered separate workloads and you only need to measure and dis-
close the ones you want.

Question 31: How do I get started running the SPECsfs97 benchmark?

Answer : Please read the User's Guide in its entirety.

Question 32: I am running into problems setting up and running the benchmark. What can I do?

Answer : Most of the problems relating to the SPECsfs97 benchmark can be resolved by referring to appro-
priate sections of the User's Guide, especially the Troubleshooting section.

Question 33: I have read the User's Guide. But I am still running into problems. What can I do next?

Answer : Looking at the sfslog.* and sfscxxx.* files can give one an idea as to what may have gone wrong.
As a last resort, one can contact SPEC. It is assumed that such calls are from people who have read
the User's Guide completely, and have met all the prerequisites for setting up and running the
benchmark.

Question 34: How does one abort a run?

Answer : One needs to kill all SFS related processes on all clients and on the prime client and re-run the
benchmark. The processes are sfs, sfs3, sfs_syncd and sfs_prime.

Question 35: For a valid run, which parameters are required to be unchanged?

Answer : Information is provided in the sfs_rc file, and this is enforced by the benchmark. If invalid parame-
ter values are selected, the benchmark reports an invalid run.

Question 36: Is there a quick way to debug a testbed?

Answer : Read the User's Guide, ping server from client, try mount the server file systems from the client
using the client's real NFS implementation, rsh from prime client to the other clients and reverse,
run benchmark with one client and one file system.



SFS 2.0 63

SFS 2.0 Documentation Version 1.0 Frequently Asked Questions

Question 37: When I specify 1000 ops/sec in the sfs_rc, the results report only 996 ops/sec requested, why is it
less?

Answer : Unlike SFS 1.1, the sfs_rc file specifies the total number of ops/sec across all of the clients used.
Because the benchmark only allow specifying an even number of ops/sec, the actual requested ops/
sec may be less due to rounding down. For example, 1000 ops/sec requested over 6 clients will
result in each client generating 166 ops/sec for an aggregate of 996 ops/sec.

Question 38: The number of operations/second that I achieve is often slightly higher or slightly lower than the
requested load. Is this a problem?

Answer : No, the benchmark generates operations using random selection and dynamic feedback to pace cor-
rectly. This will result in small difference from the actual requested load.

3.0  Tuning the Server
Question 39: What are a reasonable set of parameters for running the benchmark?

Answer : Study existing results' pages with configuration information similar to your system configuration.

Question 40: When I request loads of 1000, 1300, 1600 OPS, I get 938, 1278, and 1298 OPS, respectively. Why
do I not get the requested load?

Answer : This may happen when one has reached the server limit for a particular configuration. One needs to
determine the bottleneck, and possibly tune and/or enhance the server configuration.

Question 41: How do I increase the performance of our server?

Answer : One may need to add, as necessary, one or more of the following: disks, memory, controllers, pro-
cessors, etc.

4.0  Submission of Results
Question 42: We have a valid set of results. How do we submit these results to SPEC?

Answer : Check the SPEC web site <http://www.specbench.org/osg/sfs97> for further details on submitting
results.



SFS 2.0 Documentation Version 1.0 Frequently Asked Questions

64 SFS 2.0



SFS 2.0 65

SFS 2.0 Documentation Version 1.0 Bibliography

CHAPTER 6 Bibliography

• [Wittle] Wittle, Mark, Brian Keith, “LADDIS: The Next Generation in NFS File Server Benchmarking”, Usenix,
1993, Design and functional discussion of the LADDIS benchmark.

• [Pawlowski] Pawlowski, Brian, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, David Hitz, “NFS Ver-
sion 3 Design and Implementation”, Usenix, June 1994, Design and implementation discussions for NFS version
3.

• [RFC1014] Sun Microsystems, Inc., “XDR: External Data Representation Standard”, RFC 1014, Sun Microys-
tems, Inc., June 1987. Specification for canonical format for data exchange, used with RPC.

• [RFC1057] Sun Microsystems, Inc., “RPC: Remote Procedure Call Protocol Specification”, RFC 1057, Sun
Microsystems, Inc., June 1988.  Remote procedure protocol specification.

• [RFC1094] Sun Microsystems, Inc., “Network Filesystem Specification”, RFC 1094, Sun Microsystems, Inc.,
March 1989.  NFS version 2 protocol specification.

• [RFC1813] Sun Microsystems, Inc. “NFS Version 3 Protocol Specification”, RFC 1813, Sun Microsystems, Inc.,
June 1995. NFS version 3 protocol specification

• [X/OpenNFS] X/Open Company, Ltd., X/Open CAE Specification: Protocols for X/Open Internetworking:
XNFS, X/Open Company, Ltd., Apex Plaza, Forbury Road, Reading Berkshire, RG1 1AX, United Kingdom,
1991.



SFS 2.0 Documentation Version 1.0 Bibliography

66 SFS 2.0


