
1

SPEC OSG Mailserver Subcommittee
SPECmail2008 Benchmark Architecture White Paper

Revision: v1.1
Date: 2 June 2008

1. Introduction

1.1 Overview

SPECmail2008 is a software benchmark designed to measure a system's ability to
act as an enterprise mail server servicing email requests, based on the Internet
standard protocols SMTP and IMAP4. The benchmark concentrates on the
workload encountered by corporate mail servers, with an overall user count in the
range of 150 to 10,000 (or more) users. It models IMAP business users accessing
IMAP servers over fast local area networks (LAN) instead of broadband, WAN or
dialup access speeds.

SPECmail2008 has been developed by the Standard Performance Evaluation
Corporation (SPEC), a non-profit group of computer vendors, system integrators,
universities, research organizations, publishers, and consultants.

This paper discusses the benchmark principles and architecture, and the rationale
behind the key design decisions. It also outlines the workload used in the
benchmark, and the general steps needed to run a benchmark. However those
aspects are covered in more detail in other documents.

1.2 Organization of this Paper

Chapter 2 discusses the basic goals and non-goals of the benchmark.

Chapter 3 introduces the performance metric of SPECmail2008 – IMAP sessions
per hour - and how it relates to the transaction mix imposed on the system under
test..

Chapter 4 explains the benchmark workload - how it was derived, how it translates
into configuration parameters for the benchmark tool and size calculations for
planning a benchmark, and how it relates to the benchmark metric.

Chapter 5 discusses some detail of aspects of the workload generation, namely the
exact workload put on the server, and how the benchmark simulates communication
with remote mail servers.

Chapter 6 defines the quality of service requirements of this benchmark.

Chapter 7 lists the references and sources (not cited elsewhere).

2

1.3 Related Documents

 SPECmail2008 Run and Reporting Rules

 Workload Analysis for Enterprise Mail Servers

 SPECmail2008 User Guide

 SPECmail2008 Sample Result Disclosure

 SPECmail2008 FAQ

All documents can be obtained from the mail server working group's home page
http://pro.spec.org/private/osg/mail_server.

1.4 Run and Reporting Rules

The Run and Reporting Rules for the SPECmail2008 benchmark are spelled out in a
separate document. They ensure execution of the benchmark in a controlled
environment. The goal is repeatability by third parties with reasonable resources
and knowledge. The rules maximize the comparability of results, leveling the
playing field as much as possible. They also define which information needs to be
included in published results, and which supporting information needs to be
submitted to the SPEC community for potential review.

Under the terms of the SPEC license, SPECmail2008 results may not be publicly
reported unless they are run in compliance with the Run and Reporting Rules.
Results published at the SPEC web site have been reviewed and approved by the
SPEC Mail Server committee. For more information on publishing results at the
SPEC web site, please send e-mail to: info@spec.org. The Run and Reporting Rules
may be found on the SPEC web site; they are also part of the SPECmail2008
distribution kit.

2. Design of the SPECmail2008 Benchmark

SPECmail2008 benchmark tests the capacity of a system as an e-mail service that
processes requests according to the Internet standard mail protocols SMTP (RFC
821) and IMAP4 (RFC 2040). The SMTP protocol is the standard for sending e-
mail from clients (users) to servers and between e-mail servers. The IMAP4
protocol allows users to access and retrieve messages from their message store.
The mail server can consist of one host or a group of hosts that act as a single,
logical entity – usually represented by a single e-mail domain.

The SPECmail_MSEnt2008 metric’s user model describes a corporate employee
that uses one of the popular IMAP4 clients to access either a mail server located
within a local area network (LAN), or an outsourced e-mail service across a high-
speed network connection (MAN). The details of an enterprise-type user's behavior
will be discussed in a later section in this paper that covers the SMTP and IMAP
work load profiles.

In this benchmark, both the Mail Server User behavior and the IMAP4 e-mail client
software vary greatly. Therefore, it is very important to identify and distinguish

3

actual IMAP4 client’s human initiated actions from automated actions performed
on behalf of each user. The specific combination of these behavior types
determines how many users a mail server can handle.

SPECmail2008 simulates the work loads of four types of IMAP4 e-mail clients,
defined in a fixed proportion across the user population. The benchmark observes
the mail server behavior under that load. It enforces the adherence to a required
level of quality of service. The goal is to simulate realistic mail server operation,
and maximize the usefulness of the benchmark results as guidelines for actual
sizing decisions.

2.1 Requirements and Goals

The key goal of SPECmail2008 is to show mail server performance in a realistic
context. This means

Appropriate Mail Store A mail server which handles the transaction load of a corporate user base
needs to hold the mail data for the same amount of users. This includes a
mailbox per user, as well as a defined number of folders and messages for
each user.

Mail Store Folder Structures The benchmark includes the construction and pre-population of multiple
folders (IMAP mailboxes) and subfolders as part of the compliance
requirements. Since IMAP is a server-centric storage service, access and
manipulation of folders plays a critical part of the overall workload.

Message MIME Structures The benchmark includes the construction and manipulation of e-mail
messages with both simple and more complex MIME (messages with
attachments) structures. Unlike POP3 servers, IMAP clients understand and
can manipulate multi-part MIME messages.

Arrival Rate Message activity requests are being issued against the server according to
behavior patterns and arrival rate modeled after real world observations.

Access over Local Area and/or
Broadband Networks

All users will access the IMAP and SMTP servers via internal corporate or
broadband network speeds.

Workload According to Real
World Data

The simulated workload (such as messages sent and received per day, the
message size distribution, the folder structure distribution, the mailbox
access frequency, message manipulation) is based on measurements derived
from multiple data sources.

Peak Hour Simulation Mail traffic is distributed unevenly over the day. Sizing must focus on
coping with the peak load. Therefore, the benchmark mail server load
simulates the peak hour of the day.

Realistic Operation The mail server is required to operate realistically, e.g. perform at least a
defined level of logging which many ISPs would use in practice. As is the
rule in all SPEC benchmarks, no benchmark-specific optimizations are
allowed.

4

2.2 Excluded Goals

Explicitly excluded goals and limitations in the scope of SPECmail2008 are:

Restricted client IP Range The benchmark does not require that there be 100's of small, remotely
connected email clients. Instead, it allows simulation of the email clients on
a small number of server-sized, locally connected client systems, in order to
make the benchmark execution practical.

Administrative Overhead The benchmark does not include administrational activities like on-line
backup and account provisioning. These are hard to standardize, and - more
importantly - they do not necessarily happen during the peak hour of daily
operation.

Provisioning Overhead Besides provisioning, the benchmark does not include modification to
account data or deletion of accounts. These activities, although
commonplace in the day-to-day operation of a mail server, are seen as
testing the directory service rather than the mail server itself. SPECmail2008
emphasizes mail server benchmarking, and includes a directory server in the
system-under-test only to the minimum extent necessary to handle normal
mail flow.

Pure Relay SMTP Traffic The benchmark does not cover relay operation (forwarding of incoming
SMTP traffic to other, remote MTAs). It does include simulation of
messages from local users to remote MTAs, as well as incoming mail from
remote MTAs. Relay operation is generally not allowed on enterprise e-mail
systems.

High Availability Overhead There is no requirement for high availability or disaster recovery measures;
this was beyond the scope of the benchmark.

Extra Content
Filter/Processing, Security

The mail server is not required to perform any extended features, like virus
scanning, spam filtering and other security measures. This was beyond the
scope of the benchmark.

SMTP Streamlining SMTP sessions can normally send one or several messages per session. The
benchmark restricts itself to one message. The collected SMTP log data
shows that this behavior dominates internally and externally generated e-
mail traffic.

3. Benchmark Metric: SPECmail_MSEnt2008
SPECmail2008 Enterprise IMAP4 Sessions Per Hour

The basis of the benchmark’s performance metric is capacity at acceptable quality
of service (QoS). The benchmark determines Acceptable QoS by measuring the
interactive response time of the mail server to each protocol step (see Chapter 6).
The boundary where a one or more critical states exceeds the Acceptable QoS
determines how many users the SUT supports.

The IMAP protocol allows many combinations of session behavior and duration –
very unlike a typical POP3 session used in SPECmail2001. Next, IMAP clients use
more than one connection into an IMAP server to perform different tasks. Lastly,
each IMAP user generate many IMAP sessions – both in parallel and serially over
the peak hour period. The number of extra sessions varies by IMAP client

5

software. Therefore the number of concurrent IMAP4 sessions is often some
multiple of the actual active IMAP users. The actual count is determined by both
active users and the specific distribution of IMAP client types.

The SPECmail2008 benchmark uses a specific distribution of the four (4) possible
IMAP4 client types that a mail server must support during the peak hour. This
transaction mix is defined later on in this document. In general, the following
conditions exist:

User Mail Store Each user has at least three (3) folders – Inbox, Trash, Sent_Mail
Each user has existing messages stored in these folders

SMTP Traffic Each user send 5 messages during Peak Hour to 3.0.6 average recipients
Each user receives 5.06 messages during Peak Hour

IMAP Session Each user establishes at least one long lived session before the peak hour
Some short lived sessions are initiated by human actions
Some short lived sessions are initiated by automated tasks

Folder Activity Each user polls one or more folders in each session at least once
Some users will created new and/or delete old folders
Some users will move messages between folders

Message Activity Each user will retrieve all new messages during the Peak Hour
Some users will also retrieve older messages
Each user might delete some messages, both old and new
A few users might search a folder

This metric cannot be compared to any other similarly named benchmark metric
which does not follow exactly that workload definition and the same execution
rules. Every aspect of each may affect the benchmark outcome.

4. IMAP4 Benchmark Decisions

4.1 Command Set

The various versions of IMAP4 RFCs as well as any number of optional extended
commands made an analysis of the IMAP4 variants problematic. Because of the
variety of client and server combinations, the subcommittee used the following
guidelines to determine the IMAP commands used.

Restrict Command Set to
RFC 2040

The decision was to stay with a very strict interpretation of
RFC 2040 and ignore later command set extensions. All e-
mail servers and clients supported the base command set
defined by RFC 2040. However, support for extended IMAP
commands varied by both mail server and mail clients.

Reduce Parameters to Most
Common Forms

Identify the most common forms of various IMAP
commands. Identify the most frequent parameter
combinations, ignoring sequence, to these commands. Map
certain parameters to an equivalent form.

Ignored Commands Ignore certain extended IMAP4 commands that affect/query
meta-data information, and is not directly related to messages
or folders. These include CAPABILITY, GETACL,

6

MYRIGHT, and NAMESPACE.

Map Extended Commands
to Base RFC Version

Certain extended IMAP4 commands duplicate functionality
found in the original RFC 2040 command set. These
commands were mapped accordingly: AUTHENTICATE to
LOGIN and IDLE/DONE combination to NOOP.

4.2 Mail Store Structures

The various versions of IMAP4 RFCs as well as any number of optional extended
commands made this analysis mandatory. The decision was to stay with a very
strict interpretation of RFC 2040 and treat some of the extended commands in the
following manner.

Message Set References Some commands used message identifiers that were a
combination of a range (A:C) and a discrete set (A,C,F).
These will be mapped to just a message identifier range
(A:C).

Specified Headers vs.
Number of Headers

The message retrieval requests for specific headers incur the
same cost regardless of which headers are retrieved.
Therefore, certain headers that are not listed in RFC821 will
be generalized into a small subset.

Restrict Folder Depth
References to Five (5) Levels

The extremely low probability rates beyond Level 5 were
collapsed into a single row at Level 5.

Reserved Folder Names All IMAP4 client types referenced three folder names:
Inbox, Inbox.Trash, Inbox.Sent. These will be created for all
users as part of the mail store initialization step.

Message MIME Structure
and Part Sizes Predominate

Unlike POP3 where messages are retrieved in whole, a
significant number of IMAP4 commands retrieved specific
MIME attachments. This means that message structures
must exist. Once this condition exists, it is almost
impossible to comply with the message size distributions
defined by the SMTP logs. The choice was made to let
message structure and attachment sizes be the primary
factors, overriding raw message sizes.

Restrict MIME Depths to
Five (5) Levels

As with the folder nesting levels, depths below five (5) were
extremely low probability. These were mapped to Level 5.

4.3 Compliant Run

The SPECmail2008 benchmark compliant conditions are as follows:

User Count Set to at least 200 users in order to meet the folder structure
distribution.

Quality of Service remains at 5 seconds for “simple” commands

5. Workload
The SPECmail2008 workload has two parts: the pre-population of the mail store with folders, sub-
folders and messages, as well as the transaction workload during runtime. Both depend on the
targeted benchmark rating.

7

It may be helpful at this point to list the basic steps of running a SPECmail2008 benchmark.

Benchmark Step What Happens

Initialize Mail Store Pre-populate the mail store according to the defined folder
and message MIME distributions. An alternative is to
restore a backup copy of a previously initialized mail server.

Restart SUT Start from a cold system (processes, file systems, databases),
so that all operating system caches are clean.

Verify Mail Store
Compliance

Verify mail store has the desired folder, message quantity
and message MIME structure distributions across all
mailboxes.

Gather Mailbox Context Benchmark gathers detailed information about actual mail
store folder names and valid messages to be used later to
generate valid IMAP commands.

Ramp-up Period Benchmark runs for a configurable time at peak hour load
levels, but no measurements are recorded. During this time,
the benchmark establishes the pre-existing Command
Sequence 1 and 2 sessions.

Peak Hour Load Test at
100%t

Internal results counters are cleared (except existing IMAP
sessions) and the benchmark manager starts recording results
returned by the load generators for the work load period.

Ramp-down Period Benchmark finishes all existing IMAP sessions but does not
initiate new sessions. Primary sessions (long lived) sessions
log out of the mail server.

Record Results Tabulate all collected results and record certain statistics to
the official results file.

Report Generation Use distributed reporter to generate human readable form of
the benchmark test results.

The actual process is a bit more complex - refer to the Run and Reporting Rules for
details.

5.1 Basis of Workload Definition

The workload profile has been determined based on actual SMTP and IMAP4
server log files gathered from multiple corporate sources. The IMAP4 data covers
e-email traffic from two (2) universities, two (2) corporate e-mail servers and one
(1) outsourced e-mail service.

The SMTP workload is extracted MTA log files and processed for arrival rates,
recipient counts, message sizes and routing (local vs. remote). The recipient
distribution includes exploded mailing lists as well as individually addressed
recipients. (Sources: Mirapoint, Openwave)

The mailbox structures and contents were derived from the list of actual folders
found during a mail server mail store survey. Every user’s mail store folders were
listed along with a count of the messages and subfolders inside. (Sources:
Mirapoint, Openwave, Sun Microsystems)

8

The message MIME structures and content types were derived from a complete
snapshot of an E-mail server’s message structures. (Source: Sun Microsystems)

5.2 Non-Transaction Related Definitions

The typical Enterprise E-Mail server with IMAP users holds user messages stored
in one or more folders. Unlike the POP3 e-mail clients, IMAP e-mail clients work
with both new and existing messages. This means the folder structures and
messages must already exist before the work load can start.

Mail Store Structures The SPECmail2008 benchmark defines a mail store structure
model that replicates a complex mail store structure, derived
from data collected from Sun and Openwave. Some folders
that will have up to two thousand (2000) messages inside.
The pre-population of the mail server ensures that a system
can handle the transaction and storage load for 200
Enterprise users. The pre-population consists of a folder
distribution and a message distribution across all mailboxes.
The runtime load defines the number and kind of
transactions that will be issued to the server during the
benchmark run.

Mail Server Storage Growth The SPECmail2008 benchmark is designed to generate a
steady mail server state: over time. However unlike the
SPECmail2001 benchmark, it is not storage neutral. Based
on the collected IMAP session samples, fewer messages
were deleted than created during the workload period.

Note: message insertion and deletion happens in folders that
are randomly and independently selected. Therefore,
mailbox structures and content change during the load test
period.

Message MIME Structures The IMAP protocol understands the concept of MIME
structures and many data samples show references to
message substructures. This means these structures must
exist to during the peak hour work load.

5.2.1 Folder Structures
A mail server that supports IMAP is likely to support a hierarchy of several
mailboxes (also known folders) in addition to the default INBOX mailbox for each
user. Below are several distributions to construct the structure of mailboxes
contained within a mailstore supported by IMAP. The data used is extracted from
the three enterprise data samples (Mirapoint, Openwave, Sun).

Configuration Key Definition and Value

LEVELXFOLDERS[] Defines the probability that a mail store has one or more
folders, at various depth.

folder with sub-folder distributions
from the Mirapoint sample.
LEVELXFOLDERS[0] = "1,34.8%; 2,21.7%;
3,11.6%; 4,7%; 5,2%; 6,2.4%; 7,1.5%;
8,.7%; 9,.7%; 10,.7%; 20,8.1%; 30,3.7%;
40,1.8%; 50,2%; 103,1.3%"
LEVELXFOLDERS[1] = "1,31.4%; 2,12.4%;

9

3,7.4%; 4,5.6%; 5,4%; 6,2.4%; 7,5%;
9,5.8%; 10,2.6%; 15,7.4%; 20,3.2%;
30,7.2%; 70,3.4%; 200,1.8%; 246,.4%"
LEVELXFOLDERS[2] = "1,43%; 2,14.9%;
3,9.1%; 4,6.8%; 5,3.5%; 6,4.1%; 7,2%;
8,2%; 9,3.3%; 10,1%; 11,1.5%; 12,1.3%;
13,.8%; 14,.3%; 15,.5%; 17,.3%; 19,1.3%;
25,.3%; 26,.8%; 28,1.3%; 29,.3%; 30,.5%;
38,.3%; 39,.2%; 41,.2%; 47,.2%; 61,.2%"
LEVELXFOLDERS[3] = "1,39.6%; 2,12.6%;
3,8.1%; 4,10.8%; 5,2.7%; 6,7.2%; 7,2.7%;
8,.9%; 9,1.8%; 11,1.8%; 12,1%; 13,.9%;
15,.9%; 16,.9%; 19,1.8%; 20,.9%;
22,1.8%; 25,.9%; 26,1.8%; 42,.9%"
LEVELXFOLDERS[4] = "1,36.8%; 2,7.9%;
3,39.5%; 4,5.3%; 6,2.6%; 7,2.6%; 8,5.3%"
LEVELXFOLDERS[5] = "1,100.0%"
LEVELXFOLDERS[6] = "1,100.0%"
LEVELXFOLDERS[7] = "1,100.0%"

LEVELXWITHSUB
_PART_LEVEL

Defines the probability distribution that a folder at each
depth (indicated by the array index) has zero or more
subfolders:

LEVELXWITHSUB[0] = "0,59%; 1,21.9%;
2,7.5%; 3,3.3%; 4,2%; 5,.4%; 6,1.3%;
7,2%; 8,.4%; 9,.7%; 10,.7%; 11,.4%;
21,.25; 26,.15%"
LEVELXWITHSUB[1] = "0,64%; 1,20.6%;
2,9%; 3,1.4%; 4,1.2%; 5,.8%; 6,1%;
7,.6%; 8,.2%; 9,.2%; 10,.4%; 15,.4%;
19,.2%"
LEVELXWITHSUB[2] = "0,80%; 1,15.7%;
2,2.3%; 3,.8%; 4,1%; 6,.2%"
LEVELXWITHSUB[3] = "0,78.4%; 1,14.4%;
2,3.6%; 3,1.8%; 4,1.8%"
LEVELXWITHSUB[4] = "0,97.4%; 1,2.6%"
LEVELXWITHSUB[5] = "1,100.0%"
LEVELXWITHSUB[6] = "1,100.0%"
LEVELXWITHSUB[7] = "0,100.0%"

The folder probability distributions exists for eight levels, but only the first five (5)
levels, are used for the message store compliance verification test. The lower levels
were excluded from the benchmark because of the extremely small probability that
such a level would exist.

5.2.2 Message Construction

The SPECmail2008 benchmark generates test messages on the fly instead of using a
set of fixed messages. Construction of each message follows these steps:

Message Construction Step Explanation

Determine Number of MIME
Parts at Top Level

Using the MIME_TOP_PART_COUNT distribution, compute
how many overall parts make up the message.

Determine Each Part’s Using the MIME_PART_LEVEL distribution, compute the

10

Substructure number of parts each Top level MIME part contains. No
effort is made to distinguish between primary and alternate
parts since this work load appears as nearly identical
commands to the mail server.

Determine Each Part’s Size Using the MIME_PART_SIZE distribution, compute the
size of each individual MIME part. This is the primary
message size factor.

As described earlier, SPECmail2008 chose to follow message structural and
attachment size distributions rather than the total message size distribution used by
the earlier SPECmail2001 benchmark. In SPECmail2001, both the e-mail server
and POP3 client tend to ignore the actual message MIME structure; recognizing just
headers and body components.

IMAP4 e-mail clients understand the concepts of attachments and expect the e-mail
server to understand the various message parts. This meant that the e-mail server
must evaluate the actual structure of each message. Therefore, message structure
and individual attachment sizes affect the actual message size, since the MIME
structural description is embedded in the message but not visible to most users.

5.2.2.1 Message Size (Deprecated: MSG_SIZE_DISTRIBUTION)

The SPECmail2001 method created a single level message that met a fixed message
size distribution. This was not possible with SPECmail2008 and the subcommittee
decided to generate messages according to the various MIME distributions instead
of the MSG_SIZE_DISTRIBUTION tables.

5.2.3 Multipurpose Internet Mail Extension (MIME) Profile
MIME is an internet attachment scheme, defined as a formal standard by RFCs
1521, 1522, and 1523. The Sun data set provided detained information about
mailbox and message structure. Thus it is the basis for the following probability
distribution tables used in the benchmark.

5.2.3.1 MIME Message Construction

The initial processing of all message sizes distinguished between single part sizes
and multipart sizes. The SPECmail2008 benchmark prioritizes individual MIME
part size over the global message size distribution.

MIME Part Count Construction Rules

Single (1) Part Use “Content-type: text/plain” in message headers

Use subpart content size distribution

Multiple Parts Use “Content Type: multipart/mixed; boundary=”xxxxxxxxx-counter” in
message headers

Use distributions for message part width and depth to help establish the set
of multipart message bodies.

Categorize MIME messages to fall into one of these pre-defined multipart
buckets.

Use subpart content size distribution to define the sub-part sizes in the
fixed pool of pre-defined multipart messages.

11

The Top-Level Part Count distribution determines the probability that a message
has N parts, where N is at least one (1). After computing the number of parts at any
one level, the benchmark computes the probability that each message part contains
further sub-levels, as defined by the MIME Part Depths distribution. Each message
part size and MIME types using the (configuration key) MIME_PART_SIZE and
internal MIME Content Type Distributions to build the actual message content.

This table shows the distribution of primary MIME Content Type (not including
subtype) of all the parts in the entire sample. It is embedded inside the benchmark
code and not configurable.

Content type Probability Content type Probability
TEXT 92.193% IMAGE 0.888%

APPLICATION 4.265% AUDIO 0.016%
MESSAGE 2.633% VIDEO 0.004%

Table 1: MIME Content Type Distribution (Source: Sun)

5.2.3.2 Benchmark MIME Message Distributions

The benchmark uses the MIME Parts, MIME Part Sizes and MIME Depth
distribution tables to construct each message stored in the mail store. These
configuration keys are fixed and cannot be changed for a compliant run.

Configuration Key Definition and Value

MIME_TOP_PART_COUNT Defines the probability that a message will have one (1)
through five (5) MIME parts. Each is either a message text,
zero or more attachments, or alternative views of the same
message texts (example plain versus rich text versions of the
same message):

MIME_TOP_PART_COUNT = "1,75.77%;
2,21.91%; 3,1.99%; 4,0.24%; 5,0.09%"

MIME_PART_LEVEL Defines the probability distribution of a message having up
to five (5) nesting levels in the overall MIME structure:

MIME_PART_LEVEL = "1,91.24%; 2,7.73%;
3,0.87%; 4,0.13%; 5,0.03%"

MIME_PART_SIZE Defines the probability distribution of individual MIME part
sizes:

MIME_PART_SIZE = "2,0.6%; 4,0.1%;
8,0.4%; 16,0.8%; 32,1.8%; 64,4.1%;
128,7.2%; 256,10.5%; 512,15.6%;
1024,13.6%; 2048,13.9%; 4096,13.4%;
8192,8.5%; 16384,4.3%; 32768,2.3%;
65536,1.2%; 131072,0.7%; 262144,0.4%;
524288,0.3%; 1048576,0.2%; 2097152,0.1%"

5.3 Transaction Workload

The Transaction Workload defines the number and type of transactions issued
against the system under test during the measurement phase of the benchmark. It

12

scales linearly with the number of users and with the SPECmail_MSEnt2008
metric. Its parameters are:

User Mail Store The overall folder (mailbox) quantity and depths
distributions (see prior section)

SMTP The number of new SMTP sessions established per second
and the percent of SMTP traffic between local and remote
domains

IMAP Number of existing IMAP4 sessions present as well as the
number of new IMAP4 sessions established per second

Message The distribution and quantity of existing messages entering
the peak hour, using the specified message MIME structure
and part size distributions.

5.3.1 SPECmail2008 Enterprise Workload Profile

The definition of the transaction workload starts with an assessment of the per-user,
per-day load profile. The following tables show assumptions for that profile, as well
as the semantics for the elements in that profile. Names in ALL_UPPER_CASE are
actual configuration parameters of the benchmark tool, names using
UpperAndLower case are inserted only for editorial purposes.

Configuration Key Definition and Value

USERNAME_PREFIX First part of all test user names used as SMTP addresses and
IMAP4 login names.
Default: USERNAME_PREFIX = spec

USER_END Maximum value appended to USERNAME_PREFIX and must
be at least 200 larger than USER_START:
Default: USER_END = 200

USER_START Minimum value appended toUSERNAME_PREFIX:
Default: USER_END = 1

USERNAME_AS_PASSWORD Use the generated account name as the login password.
Default: USERNAME_AS_PASSWORD = 1 or 0

USER_PASSWORD Use this value as the login password for all accounts.
Example: USER_PASSWORD = <string>

IMAP_SERVER Hostname (not IP) of SUT’s IMAP4 server

IMAP_PORT Socket number of SUT’s IMAP4 server

SMTP_SERVER Hostname (not IP) of SUT’s SMTP server

SMTP_PORT Socket number of SUT’s SMTP server

LOCAL_DOMAIN Domain name associated with local accounts
REMOTE_DOMAIN Domain name used to relay message

CLIENTS List of hostname:port pairs representing one or more load
generators

THREADS_PER_CLIENT Maximum number of Java threads used by each load
generator during initialization, verification and context gather
phases.
Default: THREADS_PER_CLIENT = 1

13

LOAD_FACTORS Percent of computed load to use as part of the load test
period.
Default: LOAD_FACTORS = 100

RUN_SECONDS How long to run and gather statistics at peak hour loads.
Default: RUN_SECONDS = 3600

WARMUP_SECONDS How long to run at peak hour loads before gathering
statistics.
Default: RUN_SECONDS = 600

Table 2: Benchmark and SUT Configuration Keys

5.3.2 SMTP Workload Profile

The following table summarizes the compliant SMTP workload used during the
load test period.

Configuration Key Definition and Value

PEAK_PCT_USERS Percent of provisioned users who receive messages during the
peak hour (also known as Active users).
Default: PEAK_PCT_USERS = 78%

MSG_RECEIVED_PER_PEAK_HOUR Number of messages received by Active users during peak
hour:
Default: MSG_RECEIVED_PER_PEAK_HOUR = 5.06

MSG_RECP_DISTRIBUTION Distribution defining number of recipients per message. The
average is 3.0.6
Default: MSG_RECP_DISTRIBUTION =
1,46.3875%; 2,11.00%; 3,9.00%; 4,8.00%;
5,7.00%; 6,6.00%; 7,5.00%; 8,4.00%;
10,2.00%; 11,1.00%; 12,0.30%; 13,0.10%;
14,0.05%; 15,0.05%; 16,0.05%; 30,0.05%;
50,0.01%; 100,0.0025%

LOCAL_TO_LOCAL_PCT Percent of total messages sent from Local users to Local
users
Default: LOCAL_TO_LOCAL_PCT = 56

REMOTE_TO_LOCAL_PCT Percent of total messages sent from Remote users to Local
users
Default: REMOTE_TO_LOCAL_PCT = 31

LOCAL_TO_REMOTE_PCT Percent of total messages sent from Local users to Remote
users
Default: LOCAL_TO_REMOTE_PCT = 13

Table 3: Peak Hour SMTP Normalized User Profile

5.3.3 SMTP Message Rates

The message inter-arrival time computation uses a simplified model because the
total number of new messages tends to be insufficient to fulfill a complex
distribution. Therefore, the time between message delivery attempts is computed as

14

the total number of messages to be delivered over the duration of the load test run
time, divided by that run time.

SMTP Inter-arrival Time = (Number of Active Users) X (Messages per
User) X (Recipients per Message) / (Load Test Time (s))

5.3.4 IMAP Workload Profile
IMAP sessions are fairly complex in nature due to their long life times, the ability
to manage multiple folder layers, and the ability to append, retrieve, and delete
messages. The SPECmail2008 IMAP Workload is defined by the combination of
two categories: client-type and command sequences.

Command Sequence A series of IMAP commands issued after the initial LOGIN
command, and terminated either a LOGOUT command or an
idle session timeout value.

Client Type A collection of one or more command sequences that
characterizes the type of IMAP sessions different IMAP4
clients implement.

The following table describes the criteria for each command-sequence.

Command
Sequence General Characteristic Comments

1 Create connection
Perform several operations using

a variety of commands (probe
folder for new messages,
deleting, and moving messages,
updating flags, list available
folders, appending messages,
searching for messages,
checkpointing, etc.)

Occasionally probe folders for
new messages

Fetch headers if any messages
arrived

Occasionally fetch body (whole
or parts of body)

Focuses on a specific folder
Does not log out session

Example Clients: Netscape (Mozilla), Pine,
Mulberry)

This is one of the “primary” sessions that
tend to stay logged into the IMAP server for
many hours or days.

Netscape uses UID commands, Pine and
Mulberry do not.

Probing folders is accomplished by:

1. Netscape: NOOP; UID FETCH n:*
(FLAGS)

2. Mulberry: SEARCH UNSEEN; SEARCH
DELETED; FETCH 1:m (FLAG
ENVELOPE BODYSTRUCTURE, …)

3. Pine: NOOP

2 Create connection
Perform several operations using

a variety of commands (probe
folder for new messages,
deleting, and moving messages,
updating flags, list available
folders, appending messages,
searching for messages,
checkpointing, etc.)

Occasionally fetch headers
Occasionally fetch header and

whole body
Does not focus on a specific

folder
Does not log out of session

Example Clients: Outlook, Outlook Express,
Mulberry

This is one of the “primary” sessions that
tend to stay logged into the IMAP server for
many hours or days.

Probing folders is accomplished by these
IMAP commands:
UID FETCH n:* (UID,

BODY.PEEK[HEADER], …)

UID FETCH 1:n-1 (UID FLAGS)

15

Command
Sequence General Characteristic Comments

3 Create connection
Fetch headers
Fetch whole body
Logout

Example Clients: Fetchmail, Outlook
Express

These sessions are very sporadic and show
dependency on results returned from
Command Sequence 4.

4 Create connection
Occasionally probe folders for

new messages
Occasionally issue other IMAP

commands that does not alter the
state of the mailstore (such as
UNSUBSCRIBE or LIST)

Sometimes logs out, not always

Example Clients: Outlook, Outlook Express,
Netscape - periodic or triggered actions

These sessions show very automated behavior
and are generated at fixed intervals for each
user.

Probing folders is accomplished by:

Outlook 2002 – Inbox:
UID FETCH m:* (UID,
BODY.PEEK[HEADER], …); or
UID FETCH 1:n (UID FLAGS)

Outlook 2002 – Others:
LSUB "" "*"; or
STATUS "mailbox name 1" (UNSEEN);
..; STATUS "mailbox name n" (UNSEEN);

2. Outlook Express:
STATUS "mailbox name" (MESSAGES
UNSEEN)

5 Create connection
Occasionally list or probe folders
Perform specific tasks, such as

deleting, messages, or appending
messages, etc.

Alters the state of the mail store
Logout

Example Clients: Mulberry, Netscape

These sessions tend to focus on a specific set
of tasks and then log out of the IMAP server.

Table 4: IMAP Command Sequence Definition

IMAP4 clients tend to use one or more of the five (5) command sequences,
connecting one or more times to the IMAP server. The IMAP4 benchmark
emulates four (4) client types, with each client type session cluster representing a
single user.

Client Type Constituent Comments

1 CS1
CS4

These two (2) command sequences operate independently
and concurrently. Some of these clients use a message
index number while others use the message UID.

2
CS1
CS4
CS5

These three (3) command sequences operate
independently and concurrently. Some of these clients use
message index number while others use the message UID.

3
CS2
CS3
CS4

These three (3) command sequences depend on both user
and automated actions. The CS2 primary session tend to
govern the tasks done in CS4. The CS3 sessions are
automated and influences the other two.

16

Client Type Constituent Comments

4
CS2
CS4
CS5

These three (3) command sequences operate
independently and in parallel. The client uses message
index number instead of message UID.

Table 5: IMAP Client Type Definitions

The compliant run uses the following combination to determine sequencing and
dependencies.

Configuration Key Definition and Value

PEAK_LOAD_PERCENT Percent of the daily IMAP load occurring during the peak
hour:

Default: PEAK_LOAD_PERCENT = 32

CLIENT_TYPE_DISTRIBUTION Defines the probability that a message will have one (1)
through five (5) MIME parts. Each is either a message text,
zero or more attachments, or alternative views of the same
message texts (example plain versus rich text versions of the
same message):

Default: CLIENT_TYPE_DISTRIBUTION =
"1,31.373%; 3,32.353%; 4,3.922%;
5,2.941%; 13,3.922%; 14,10.784%;
15,1.961%; 24,0.980%; 34,2.941%;
45,2.941%; 134,0.980%; 145,3.922%;
1245,0.980%"

CS3_MEAN_IA Interarrival rate of new CS3 sessions:

Default: CS3_MEAN_IA = 274350

Table 6: IMAP Client Type Load and Distributions

Each CLIENT_TYPE_DISTRIBUTION tuple defines the command sequence grouping.
The first element is a list of Command Sequence numbers (1 == CS1, 34 ==
CS3+CS4). The second element is the percentage of overall load generator client
threads that will implement each combination. The number of IMAP sessions
varies as this matrix changes. Each load generator thread is assigned one specific
combination.

The total number of IMAP sessions is related directly to the total number of active
users, as distributed by CS1, CS2, CS4 and CS5 percentages. Only CS3 is not
included in the total since its session length is determined by SUT response times
and number of subscribed folders.

The effective Client Type distribution applied to the base UserCount totals to 136%.

CS1 CS2 CS3 CS4 CS5

53.92% 1.96% 40.20% 27.45% 12.75%

Table 7: Effective IMAP Client Type Distribution

17

5.3.5 IMAP Benchmark’s States
The analysis process classified individual extracted IMAP sessions according to the
rules in Table 4: IMAP Command Sequence Definition, and the actual IMAP4
command and parameter combination mapped to common states. The state-to-state
transitions were then collated and the corresponding probabilities (represented as
percentages) collected. The analysis process created a large number of states (234),
and a wide variety of possible state transitions (from 1 to 24). However, further
analysis reduced the large number of states to only 64 states, maximum. The
restrictions include

commands needed to establish one of the five Command Sequences
commands present during the peak hour
commands that represented a more than 5 percent of the total number
commands between 1 and 5% that should incur a disproportional computing resource, such

as SEARCH or moving messages between folders

Table 8 lists all derived IMAP command state names, their numeric state ID code,
and which data source used it. Some states are variations of each other (same
command but slight parameter variation) because of the four different IMAP client
types. These different clients used these variants for the same purpose. The
benchmark treats these as unique command states, based on Client Type affiliation.

Command states found in the Peak Hour data samples, are marked with an ‘X’ in
the table grid.

Table 8: Detected IMAP4 Command-States

State
Identfier State Name Mirapoint Sun

University
of

Wollongang
1. APPEND X X X
2. CHECK X X X
3. CLOSE
4. COPY_NUM_FOLDER
5. COPY_RANGE_FOLDER
6. CREATE X
7. DELETE
8. EXAMINE_FOLDER
9. EXAMINE_INBOX
10. EXAMINE_INBOXSENT
11. EXAMINE_SENT
12. EXAMINE_SENT_ITEMS
13. EXPUNGE X X X
14. FETCH_NUM
15. FETCH_NUM_BODYALL X X
16. FETCH_NUM_BODYPARTS
17. FETCH_NUM_BODYPEEK X
18. FETCH_NUM_BODYPEEK_HEADER X
19. FETCH_NUM_BODYPEEK_HEADERFIELDS
20. FETCH_NUM_BODYSTRUCTURE_FLAGS X X
21. FETCH_NUM_BODY_BODYALL_HEADERFIELDS
22. FETCH_NUM_BODY_HEADER
23. FETCH_NUM_ENVELOPE_

BODYPEEK_HEADERFIELDS_BODYSTRUCTURE_
FLAGS_INTERNALDATE_RFC822SIZE

24. FETCH_NUM_ENVELOPE_BODYPEEK
_HEADERFIELDS
_FLAGS_INTERNALDATE_RFC822SIZE
_UID

25. FETCH_NUM_ENVELOPE_BODYPEEK_
HEADERFIELDS_FLAGS_INTERNALDATE

X X

18

State
Identfier State Name Mirapoint Sun

University
of

Wollongang
_RFC822SIZE_UID

26. FETCH_NUM_FLAGS X
27. FETCH_NUM_FLAGS_BODYPEEK_

HEADERFIELDS_INTERNALDATE_RFC822SIZE
28. FETCH_NUM_FLAGS_BODYSTRUCTURE

_ENVELOPE_INTERNALDATE_RFC822SIZE_UID
29. FETCH_NUM_RFC822HEADER
30. FETCH_NUM_RFC822TEXT
31. FETCH_NUM_UID X
32. FETCH_NUM_UID_BODYPEEK_HEADERFIELDS

_ENVELOPE_FLAGS_INTERNALDATE_RFC822SIZE
X

33. FETCH_RANGE_UID X
34. FETCH_RANGE_BODYPEEK_HEADERFIELDS
35. FETCH_RANGE_ENVELOPE_BODYPEEK_

HEADERFIELDS_FLAGS_INTERNALDATE_
RFC822SIZE_UID

36. FETCH_RANGE_FLAGS_BODYPEEK
_HEADERFIELDS
_INTERNALDATE_RFC822SIZE

37. FETCH_RANGE_FLAGS_
BODYSTRUCTURE_ENVELOPE
_INTERNALDATE_RFC822SIZE_UID

X

38. FETCH_RANGE_UID_BODYPEEK_HEADERFIELDS
_ENVELOPE_FLAGS_INTERNALDATE_RFC822SIZE

X

39. FETCH_SERIES_ENVELOPE_
BODYPEEK_HEADERFIELDS_
FLAGS_INTERNALDATE_RFC822SIZE_UID

40. FETCH_SERIES_ENVELOPE_
BODYSTRUCTURE_INTERNALDATE_RFC822SIZE

41. FETCH_SERIES_FLAGS_BODYPEEK_HEADERFIELDS
_INTERNALDATE_RFC822SIZE

42. FETCH_SERIES_UID
43. FETCH_UID
44. LIST X X X
45. LOGIN X X X
46. LOGOUT X X X
47. LSUB_NULL_FOLDER X X
48. LSUB_NULL_PART
49. LSUB_NULL_SENT
50. LSUB_NULL_WILDCARD X X X
51. LSUB_WILDCARD_WILDCARD
52. NOOP X X X
53. RENAME_FOLDER_FOLDER
54. RENAME_INBOXINBOXSENT

_INBOXTRASHINBOXSENT
55. SEARCH_ALL_DELETED X
56. SEARCH_ALL_RANGE_CHARSET_RFCHEADER
57. SEARCH_ALL_RFCHEADER
58. SEARCH_ALL_UNDELETED_UNSEEN
59. SEARCH_DELETED X
60. SEARCH_RFCHEADER
61. SEARCH_UNDELETED
62. SEARCH_UNSEEN X
63. SELECT_
64. SELECT_FOLDER X X
65. SELECT_FOLDER_ITEMS
66. SELECT_INBOX X X X
67. SELECT_INBOXSENT X
68. SELECT_INBOXSENT_ITEMS
69. SELECT_SENT
70. SELECT_SENT_ITEMS
71. STARTED
72. STATUS_FOLDER_ITEMS_MESSAGES_UNSEEN
73. STATUS_FOLDER_ITEMS_UNSEEN
74. STATUS_FOLDER_MESSAGES

19

State
Identfier State Name Mirapoint Sun

University
of

Wollongang
75. STATUS_FOLDER_MESSAGES_RECENT

_UNSEEN_UIDVALIDITY_UIDNEXT
76. STATUS_FOLDER_MESSAGES_UNSEEN
77. STATUS_FOLDER_UIDNEXT
78. STATUS_FOLDER_UIDNEXT_

UIDVALIDITY_MESSAGES
79. STATUS_FOLDER_UNSEEN
80. STATUS_INBOXSENT_ITEMS_MESSAGES_UNSEEN
81. STATUS_INBOXSENT_ITEMS_UNSEEN
82. STATUS_INBOXSENT_UNSEEN
83. STATUS_INBOXSENT_MESSAGES_UNSEEN
84. STATUS_INBOX_MESSAGES_RECENT

_UNSEEN_UIDVALIDITY_UIDNEXT
85. STATUS_INBOX_MESSAGES_UNSEEN
86. STATUS_INBOX_UIDNEXT
87. STATUS_INBOX_UIDNEXT_

UIDVALIDITY_MESSAGES
88. STATUS_INBOX_UNSEEN
89. STATUS_SENT_ITEMS_MESSAGES_UNSEEN
90. STATUS_SENT_ITEMS_UNSEEN
91. STATUS_SENT_MESSAGES_UNSEEN
92. STATUS_SENT_UNSEEN
93. STORE_NUM_SET_FLAGS_ANSWERED
94. STORE_NUM_SET_FLAGS_DELETED X X
95. STORE_NUM_SET_FLAGS_SEEN
96. STORE_NUM_UNSET_FLAGS_DELETED
97. STORE_NUM_UNSET_FLAGS_SEEN
98. STORE_RANGE_SET_FLAGS_DELETED
99. STORE_RANGE_SET_FLAGS_SEEN
100. STORE_SERIES_SET_FLAGS_DELETED
101. STORE_UNTILEND_SET_FLAGS_DELETED
102. STORE_UNTILEND_SET_FLAGS_SEEN
103. SUBSCRIBE_FOLDER
104. SUBSCRIBE_INBOXSENT
105. UID_COPY_NUM_FOLDER X X X
106. UID_COPY_NUM_INBOX
107. UID_COPY_NUM_INBOXSENT
108. UID_COPY_RANGE_FOLDER X X X
109. UID_COPY_RANGE_INBOX
110. UID_COPY_RANGE_INBOXSENT
111. UID_COPY_SERIES_FOLDER X X
112. UID_FETCH_NUM_BODY
113. UID_FETCH_NUM_BODYALL X X X
114. UID_FETCH_NUM_BODYPARTS X X X
115. UID_FETCH_NUM_BODYPEEK X
116. UID_FETCH_NUM_BODYPEEKALL X
117. UID_FETCH_NUM_BODYPEEK_HEADER X
118. UID_FETCH_NUM_BODYPEEK_UID
119. UID_FETCH_NUM_BODYSTRUCTURE X X X
120. UID_FETCH_NUM_BODY

_BODYMIMEALL
_BODYMIMEPARTS_HEADER

X X X

121. UID_FETCH_NUM_BODY_
BODYMIMEALL_HEADER

X X X

122. UID_FETCH_NUM_BODY_HEADER
123. UID_FETCH_NUM_ENVELOPE
124. UID_FETCH_NUM_FLAGS
125. UID_FETCH_NUM_RFC822SIZE X
126. UID_FETCH_NUM_UID
127. UID_FETCH_NUM_UID_BODYPEEK_

FLAGS_INTERNALDATE
128. UID_FETCH_NUM_UID_BODYPEEK_

FLAGS_INTERNALDATE_RFC822SIZE
129. UID_FETCH_NUM_UID_BODYPEEK_

HEADERFIELDS_FLAGS_RFC822SIZE
X X X

20

State
Identfier State Name Mirapoint Sun

University
of

Wollongang
130. UID_FETCH_NUM_UID_BODYPEEK_

HEADER_FLAGS_INTERNALDATE_RFC822SIZE
131. UID_FETCH_NUM_UID_BODYPEEK_RFC822SIZE X X
132. UID_FETCH_NUM_UID_BODY_RFC822SIZE X X
133. UID_FETCH_RANGE_UID_

BODYPEEK_FLAGS_INTERNALDATE
134. UID_FETCH_RANGE_UID_BODYPEEK

_HEADERFIELDS_FLAGS_RFC822SIZE
X X X

135. UID_FETCH_RANGE_UID_BODYPEEK
_RFC822SIZE

X

136. UID_FETCH_RANGE_UID_ENVELOPE
_FLAGS_INTERNALDATE_RFC822SIZE

137. UID_FETCH_RANGE_UID_FLAGS
138. UID_FETCH_RANGE_UID_RFC822SIZE

_BODYPEEK_HEADERFIELDS
139. UID_FETCH_RANGE_UID_UID_BODYPEEK_

HEADER_HEADERFIELDS_FLAGS_
FLAGS_RFC822SIZE_RFC822SIZE_UID

140. UID_FETCH_SERIES_UID_
BODYPEEK_FLAGS_INTERNALDATE

141. UID_FETCH_SERIES_UID_
BODYPEEK_HEADERFIELDS_FLAGS_RFC822SIZE

142. UID_FETCH_SERIES_UID_
BODYPEEK_RFC822SIZE

X

143. UID_FETCH_UID_BODYPEEK_
HEADERFIELDS_FLAGS_RFC822SIZE

144. UID_FETCH_UID_BODYPEEK_
HEADER_FLAGS_INTERNALDATE_RFC822SIZE

145. UID_FETCH_UNTILEND_BODYPEEK_
HEADERFIELDS_ENVELOPE_FLAGS
_INTERNALDATE_RFC822SIZE_UID

146. UID_FETCH_UNTILEND_ENVELOPE
_FLAGS_INTERNALDATE_RFC822SIZE_UID

147. UID_FETCH_UNTILEND_FLAGS X X X
148. UID_FETCH_UNTILEND_UID_BODYPEEK

_HEADERFIELDS_FLAGS_RFC822SIZE
X

149. UID_FETCH_UNTILEND_UID_BODYPEEK
_HEADER_FLAGS_INTERNALDATE_RFC822SIZE

150. UID_FETCH_UNTILEND_UID_FLAGS
151. UID_FETCH_UNTILEND_UID_FLAGS

_INTERNALDATE_RFC822HEADER_RFC822SIZE
152. UID_SEARCH_ANSWERED
153. UID_SEARCH_DELETED X
154. UID_SEARCH_FLAGGED
155. UID_SEARCH_HEADER_

QUESTION_RFCHEADER_UNDELETED
156. UID_SEARCH_HEADER_

RFCHEADER_UNDELETED
157. UID_SEARCH_HEADER_UNDELETED X X
158. UID_SEARCH_KEYWORD
159. UID_SEARCH_NOTDELETED_UID_UNTILEND
160. UID_SEARCH_RFCHEADER_UNDELETED X
161. UID_SEARCH_SEEN
162. UID_SEARCH_SINCE
163. UID_SEARCH_UID_NUM
164. UID_SEARCH_UID_NUM_NOTDELETED
165. UID_SEARCH_UID_RANGE
166. UID_SEARCH_UID_RANGE_NOTDELETED
167. UID_SEARCH_UID_UNTILEND_

UNDELETED_UNDRAFT_UNSEEN
168. UID_SEARCH_UID_UNTILEND

_UNDELETED_UNSEEN
169. UID_SEARCH_UNDELETED
170. UID_SEARCH_UNDELETED_UNSEEN
171. UID_SEARCH_UNSEEN X
172. UID_SEARCH_UNTILEND_

21

State
Identfier State Name Mirapoint Sun

University
of

Wollongang
173. UID_STORE_NUM_SET_FLAGS

_ANSWERED
X X X

174. UID_STORE_NUM_SET_FLAGS_
ANSWERED_DELETED_SEEN

175. UID_STORE_NUM_SET_FLAGS_
ANSWERED_SEEN

176. UID_STORE_NUM_SET_FLAGS_DELETED X X X
177. UID_STORE_NUM_SET_FLAGS_

DELETED_SEEN
X

178. UID_STORE_NUM_SET_FLAGS_FLAGGED X
179. UID_STORE_NUM_SET_FLAGS_SEEN X X X
180. UID_STORE_NUM_SET_FLAGS_SEEN

_ANSWERED
181. UID_STORE_NUM_SET_FLAGS_SEEN

_DELETED
X

182. UID_STORE_NUM_UNSET_FLAGS_
183. UID_STORE_NUM_UNSET_FLAGS_ANSWERED X
184. UID_STORE_NUM_UNSET_FLAGS_DELETED X
185. UID_STORE_NUM_UNSET_FLAGS_FLAGGED X
186. UID_STORE_NUM_UNSET_FLAGS_

FLAGGED_ANSWERED
187. UID_STORE_NUM_UNSET_FLAGS_FLAGGED

_FORWARDED_MDNSENT_DELETED_DRAFT
188. UID_STORE_NUM_UNSET_FLAGS_SEEN X X
189. UID_STORE_NUM_UNSET_FLAGS_SEEN

_ANSWERED
190. UID_STORE_NUM_UNSET_FLAGS_SEEN

_ANSWERED_DELETED
191. UID_STORE_NUM_UNSET_FLAGS_SEEN

_ANSWERED_DELETED_DRAFT_FLAGGED
192. UID_STORE_NUM_UNSET_FLAGS_SEEN_

ANSWERED_DELETED_FLAGGED
193. UID_STORE_NUM_UNSET_FLAGS_

SEEN_ANSWERED_FLAGGED
194. UID_STORE_NUM_UNSET_FLAGS_SEEN_DELETED
195. UID_STORE_NUM_UNSET_FLAGS_SEEN_FLAGGED
196. UID_STORE_NUM_UNSET_FLAGS_

SEEN_FORWARDED_MDNSENT_
ANSWERED_DELETED_DRAFT_FLAGGED

197. UID_STORE_NUM_UNSET_FLAGS
_SEEN_FORWARDED_MDNSENT_
DELETED_DRAFT_FLAGGED

198. UID_STORE_NUM_UNSET_FLAGS_
SEEN_MDNSENT_ANSWERED_
DELETED_DRAFT_FLAGGED

199. UID_STORE_RANGE_SET_FLAGS_ANSWERED
200. UID_STORE_RANGE_SET_FLAGS_DELETED X X X
201. UID_STORE_RANGE_SET_FLAGS_DELETED_SEEN
202. UID_STORE_RANGE_SET_FLAGS_SEEN
203. UID_STORE_RANGE_SET_FLAGS_SEEN_DELETED
204. UID_STORE_RANGE_UNSET_FLAGS_1006190098397113
205. UID_STORE_RANGE_UNSET_FLAGS_ANSWERED_

FORWARDED_MDNSENT_DELETED_DRAFT_FLAGGED
206. UID_STORE_RANGE_UNSET_FLAGS_DELETED
207. UID_STORE_RANGE_UNSET_FLAGS_SEEN
208. UID_STORE_RANGE_UNSET_FLAGS_SEEN_

FORWARDED_MDNSENT_ANSWERED_
DELETED_DRAFT_FLAGGED

209. UID_STORE_SERIES_SET_FLAGS_DELETED X X
210. UID_STORE_SERIES_SET_FLAGS_DELETED_SEEN
211. UID_STORE_SERIES_SET_FLAGS_SEEN
212. UID_STORE_SERIES_UNSET_FLAGS_SEEN

_FORWARDED_MDNSENT_ANSWERED
_DELETED_DRAFT_FLAGGED

213. UID_STORE_UNSET_FLAGS_SEEN
214. UNSUBSCRIBE_FOLDER

22

State
Identfier State Name Mirapoint Sun

University
of

Wollongang
215. SEARCH_ALL_CALL_INFORMATION X
216. UID_COPY_NUM_ X
217. UID_COPY_NUM_TRASH X X
218. UID_COPY_RANGE_TRASH X
219. UID_COPY_SERIES_TRASH X
220. UID_FETCH_NUM_BODYPEEK_RFC822SIZE_UID X
221. UID_FETCH_NUM_BODY_RFC822SIZE_UID X
222. UID_FETCH_NUM_UID_BODYPEEK_HEADER_FLAGS

_RFC822SIZE
X

223. UID_FETCH_RANGE_UID_BODYPEEK_HEADER_FLAG
S
_RFC822SIZE

X

224. LSUB_ X
225. LSUB_. X
226. SUBSCRIBE_TRASH X
227. UID_COPY_NUM_. X
228. UID_COPY_RANGE_. X
229. UID_COPY_SERIES_. X
230. UID_FETCH_NUM_BODYMIMEALL X
231. UID_FETCH_NUM_UID_BODYSTRUCTURE X
232. UID_FETCH_RANGE_BODYPEEK_HEADERFIELDS X
233. UID_FETCH_UNTILEND_FLAGS_RFC822SIZE X
234. SESSION_START X X X

5.3.6 SPECmail2008 State Engine Components

The benchmark’s state engine is driven by a set of internally defined tables, found
in the CS1State.java, CS2State.java, CS3State.java, CS4State.java, and
CS5State.java files.

Benchmark Global Table Definition and Value

TOSTATE[][] An array of State Identifiers. Each row in the array corresponds to the
integer State ID. Each column represents one of the possible “next”
states.

Example:

CS1STATE::TOSTATE[][] = {
{ 0 }, // 0 Place holder
{ 1, 23, 25, 27, 32, 33, 56 }, // 1
{ 12, 23, 27, 54, 60 }, // 2
...
{ 12, 14, 15, 25, 27, 48, 51, 53, 54 }, // 5
{ 1, 2, 6, 7, 9, 11, 15, 27, 36, 37 }, // 6
{ 6, 7, 11, 37 }, // 7
...
{ 2, 25, 27, 40, 50, 56, 57, 59, 61 }, // 59
{ 27, 40, 47, 50, 54, 57 }, // 60
{ 50, 59, 61 }, // 61
{ 5, 27, 40, 47, 50, 56 }, // 62
{ 27 }, // 63
{ 5, 42, 47, 50 } // 64

TOSTATEPERCENT[][] Defines the probability (column) that each state present in CS2 (row)
moves to the next state, as defined in the corresponding TOSTATE
array.

23

Example:
CS2STATE::TOSTATEPERCENT[][] = {
{ 0.0000 }, // 0 Place holder
{ 0.2000, 0.2000, 0.2000, 0.4000 }, // 1
{ 0.0465, 0.6744, 0.1628, 0.0698 }, // 2
{ 1.0000 }, // 3
{ 1.0000 }, // 4
{ 0.7500, 0.2500 }, // 5
{ 1.0000 }, // 6
{ 0.0132, 0.0132, 0.1711, 0.8026 }, // 7
{ 0.0030, 0.0030, 0.0030, 0.1875, 0.8036 }, // 8
{ 1.0000 } // 9

toStateCount[][]
toStateAllowed[][]

These two pre-sized tables to hold occurrence counts and transition
permissions. These two table ensure that every state (column)
transition has been invoked, in the proper proportion. This enforces
compliance with the TOSTATEPERCENT table, in case the “random”
function is not very random.

TOSTATEIARATE[][] This array defines the State-to-State Inter-Arrival wait time
computation type (LOGNORM, in most cases) and the derived from
the IMAP session data samples. As with the TOSTATE and
TOSTATEPERCENT, each row represents a specific IMAP4 command
and parameter combination. Each column represents the minimum wait
time before moving to the corresponding “next” state.

Example:
CS4STATE:: TOSTATEIARATE[][]= {
{ "Place holder" }, // 0 Place holder
{ "LOGNORM:349.6307", "LOGNORM: 3386.3247",
"LOGNORM:395.4172", ... }, // 1
{ "LOGNORM:0.0998" }, // 2
{ "LOGNORM:0.0718" }, // 3
{ "LOGNORM:0.0988" }, // 4
{ "LOGNORM:0.1369", "LOGNORM
{ "LOGNORM:459.2843", "LOGNO
{ "LOGNORM:0.0546", "LOGNORM
{ "LOGNORM:0.0000" }, // 8
{ "LOGNORM:0.0032", "LOGNORM:0027", "LOGNORM:0.0079" },
{ "LOGNORM:428.7473", "LOGNO
{ "LOGNORM:1.4748" }, // 11
{ "LOGNORM:1.1354" }, // 12
{ "LOGNORM:0.0000" }, // 13
{ "LOGNORM:0.0153" }, // 14
{ "LOGNORM:0.1084" }, // 15
{ "LOGNORM:0.0932" }, // 16
...

STATEIDTOMETACOMMAND[] The actual State Identification strings to be used for internal to external
reports, such as debug statements and results.

Example:
CS4STATE::STATEIDTOMETACOMMAND[]={
"Place holer", // 0 Place holder
"APPEND", //1
"CHECK", //2
"CLOSE", //3

24

"CREATE", //4
"EXPUNGE", //5
"LIST", //6
"LOGIN", //7
"LOGOUT", //8
"NOOP", //9
"SELECT_FOLDER", //10
"SELECT_INBOX", //11
"SELECT_INBOXSENT", //12
"SESSION_START", //13
"SUBSCRIBE_FOLDER", //14
"UID_COPY_NUM_FOLDER", //15
"UID_COPY_RANGE_FOLDER", //16
"UID_FETCH_NUM_BODYALL", //17
...

Table 9: IMAP State Transition Tables and Probabilities

6. Benchmark Reportable Parameters:

The following table shows IMAP4 commands deemed critical enough to consider
reportable, and whether to consider the corresponding Quality-of-Service (QoS)
value.

Table 10: Reportable IMAP Commands

IMAP Command Report for Workload Report for QOS
LOGIN Yes Yes
LOGOUT Yes Yes
NOOP Yes No
SEARCH Yes No
UIDSEARCH Yes No
APPEND Yes
EXPUNGE Yes
STORE Yes
FETCH (Single) Body Yes Yes
FETCH (Many) Body Yes
FETCH (Single) Meta Yes
FETCH (Many) Meta Yes
FETCH (Single) Header Yes
FETCH (Many) Header Yes
UIDFETCH (Single) Body Yes Yes
UIDFETCH (Many) Body Yes
UIDFETCH (Single) Meta Yes
UIDFETCH (Many) Meta Yes
UIDFETCH (Single) Header Yes
UIDFETCH (Many) Header Yes
COPY (Single) Yes
COPY (Many) Yes
UIDCOPY (Single) Yes
UIDCOPY (Many) Yes
CHECK Yes
CREATE Yes Yes
DELETE Yes Yes

25

EXAMINE Yes
LIST Yes
LSUB Yes
RENAME Yes Yes
SELECT Yes
STATUS Yes Yes
SUBSCRIBE Yes Yes
UNSUBSCRIBE Yes Yes

7. References:

7.1 Relevant RFCs (see www.ietf.org):
2045 – Part 1: Format of Internet Message Bodies
2046 – Part 2: Media types
2047 – Part 3: Header and Body Extensions for non-ASCII Text, non Textual message parts and

multi-part messages
2048 – Part 4: Registrations
2049 – Part 5: Conformance Criteria and Examples
2231 – Extension to specify the language to display the part, parameter values in other (non US-

ASCII) character sets, and continuation mechanism for long parameter values.
2646 – Update to RFC 2046 to define variations of supported “Plain/Text” content types to

incorporate legacy plain text and flow line control.

