Copyright © 2016 Intel Corporation. All Rights Reserved.
Invoke the Intel oneAPI DPC++ C compiler.
Invoke the Intel oneAPI Fortran compiler.
Invoke the Intel oneAPI Fortran compiler.
Invoke the Intel oneAPI DPC++ C compiler.
Invoke the Intel oneAPI DPC++ C compiler.
Invoke the Intel oneAPI Fortran compiler.
Invoke the Intel oneAPI Fortran compiler.
Invoke the Intel oneAPI DPC++ C compiler.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that Fortran functions called from C should have their names lower-cased.
Specifies that the format will be big endian for INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Fortran to C symbol naming. C symbol names are lower case with one underscore. _symbol
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
For netcdf, if defined uses Fortran symbol names ABC as abc_
Specifies that the format will be big endian for INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
Specifies that the units for the OPEN statement RECL specifier (record length) value are in bytes for unformatted data files, not longwords (four-byte units). For formatted files, the RECL value is always in bytes.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that Fortran functions called from C should have their names lower-cased.
Specifies that the format will be big endian for INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Fortran to C symbol naming. C symbol names are lower case with one underscore. _symbol
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
For netcdf, if defined uses Fortran symbol names ABC as abc_
Specifies that the format will be big endian for INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
Specifies that the units for the OPEN statement RECL specifier (record length) value are in bytes for unformatted data files, not longwords (four-byte units). For formatted files, the RECL value is always in bytes.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Compiles for a 64-bit (LP64) data model.
Sets the language dialect to conform to the indicated C standard.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
-Wno-implicit-int is needed to allow the compiler to accept invalid C code where the type specifier is missing. With this diagnostic disabled, the missing type will be interpreted as `int`, as in C89 (the last version of C in which implicit type specifiers were allowed).
Specifies preferred vector width for auto-vectorization. Defaults to 'none' which allows target specific decisions.
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
Compiles for a 64-bit (LP64) data model.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may cause extra overhead at run time. This option has the same effect as option assume realloc_lhs.
If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option assume norealloc_lhs.
The align toggle changes how data elements are aligned. Variables and arrays are analyzed and memory layout can be altered. Specifying array32byte will look for opportunities to transform and reailgn arrays to 32byte boundaries.
Make all local variables AUTOMATIC. Same as -automatic
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
Compiles for a 64-bit (LP64) data model.
Sets the language dialect to conform to the indicated C standard.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
-Wno-implicit-int is needed to allow the compiler to accept invalid C code where the type specifier is missing. With this diagnostic disabled, the missing type will be interpreted as `int`, as in C89 (the last version of C in which implicit type specifiers were allowed).
Specifies preferred vector width for auto-vectorization. Defaults to 'none' which allows target specific decisions.
Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may cause extra overhead at run time. This option has the same effect as option assume realloc_lhs.
If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option assume norealloc_lhs.
The align toggle changes how data elements are aligned. Variables and arrays are analyzed and memory layout can be altered. Specifying array32byte will look for opportunities to transform and reailgn arrays to 32byte boundaries.
Make all local variables AUTOMATIC. Same as -automatic
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
Compiles for a 64-bit (LP64) data model.
Sets the language dialect to conform to the indicated C++ standard.
Sets the language dialect to conform to the indicated C standard.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
-Wno-implicit-int is needed to allow the compiler to accept invalid C code where the type specifier is missing. With this diagnostic disabled, the missing type will be interpreted as `int`, as in C89 (the last version of C in which implicit type specifiers were allowed).
Specifies preferred vector width for auto-vectorization. Defaults to 'none' which allows target specific decisions.
Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may cause extra overhead at run time. This option has the same effect as option assume realloc_lhs.
If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option assume norealloc_lhs.
The align toggle changes how data elements are aligned. Variables and arrays are analyzed and memory layout can be altered. Specifying array32byte will look for opportunities to transform and reailgn arrays to 32byte boundaries.
Make all local variables AUTOMATIC. Same as -automatic
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
Compiles for a 64-bit (LP64) data model.
Sets the language dialect to conform to the indicated C standard.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
-Wno-implicit-int is needed to allow the compiler to accept invalid C code where the type specifier is missing. With this diagnostic disabled, the missing type will be interpreted as `int`, as in C89 (the last version of C in which implicit type specifiers were allowed).
Specifies preferred vector width for auto-vectorization. Defaults to 'none' which allows target specific decisions.
Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may cause extra overhead at run time. This option has the same effect as option assume realloc_lhs.
If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option assume norealloc_lhs.
The align toggle changes how data elements are aligned. Variables and arrays are analyzed and memory layout can be altered. Specifying array32byte will look for opportunities to transform and reailgn arrays to 32byte boundaries.
Make all local variables AUTOMATIC. Same as -automatic
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Enable O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enable optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
Enable optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
Enable optimizations for speed and disables some optimizations that increase code size and affect speed.
To limit code size, this option:
The O1 option may improve performance for applications with very large code size, many branches, and execution time not dominated by code within loops.
-O1 sets the following options:Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
-fno-builtin disables inline expansion for all intrinsic functions.
This option trades off floating-point precision for speed by removing the restriction to conform to the IEEE standard.
EBP is used as a general-purpose register in optimizations.
Places each function in its own COMDAT section.
Flushes denormal results to zero.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact info@spec.org
Copyright 2017-2024 Standard Performance Evaluation Corporation
Tested with SPEC CPU2017 v1.1.9.
Report generated on 2024-01-30 23:20:23 by SPEC CPU2017 flags formatter v5178.