Copyright © 2016 Intel Corporation. All Rights Reserved.
Invoke the Intel oneAPI DPC++ C compiler.
Invoke the Intel oneAPI Fortran compiler.
Invoke the Intel oneAPI Fortran compiler.
Invoke the Intel oneAPI DPC++ C compiler.
Invoke the Intel oneAPI DPC++ C compiler.
Invoke the Intel oneAPI Fortran compiler.
Invoke the Intel oneAPI Fortran compiler.
Invoke the Intel oneAPI DPC++ C compiler.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that Fortran functions called from C should have their names lower-cased.
Specifies that the format will be big endian for INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Fortran to C symbol naming. C symbol names are lower case with one underscore. _symbol
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
For netcdf, if defined uses Fortran symbol names ABC as abc_
Specifies that the format will be big endian for INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
Specifies that the units for the OPEN statement RECL specifier (record length) value are in bytes for unformatted data files, not longwords (four-byte units). For formatted files, the RECL value is always in bytes.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that Fortran functions called from C should have their names lower-cased.
Specifies that the format will be big endian for INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Fortran to C symbol naming. C symbol names are lower case with one underscore. _symbol
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
For netcdf, if defined uses Fortran symbol names ABC as abc_
Specifies that the format will be big endian for INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
Specifies that the units for the OPEN statement RECL specifier (record length) value are in bytes for unformatted data files, not longwords (four-byte units). For formatted files, the RECL value is always in bytes.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Compiles for a 64-bit (LP64) data model.
Sets the language dialect to conform to the indicated C standard.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
-Wno-implicit-int is needed to allow the compiler to accept invalid C code where the type specifier is missing. With this diagnostic disabled, the missing type will be interpreted as `int`, as in C89 (the last version of C in which implicit type specifiers were allowed).
Specifies preferred vector width for auto-vectorization. Defaults to 'none' which allows target specific decisions.
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
Compiles for a 64-bit (LP64) data model.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may cause extra overhead at run time. This option has the same effect as option assume realloc_lhs.
If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option assume norealloc_lhs.
The align toggle changes how data elements are aligned. Variables and arrays are analyzed and memory layout can be altered. Specifying array32byte will look for opportunities to transform and reailgn arrays to 32byte boundaries.
Make all local variables AUTOMATIC. Same as -automatic
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
Compiles for a 64-bit (LP64) data model.
Sets the language dialect to conform to the indicated C standard.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
-Wno-implicit-int is needed to allow the compiler to accept invalid C code where the type specifier is missing. With this diagnostic disabled, the missing type will be interpreted as `int`, as in C89 (the last version of C in which implicit type specifiers were allowed).
Specifies preferred vector width for auto-vectorization. Defaults to 'none' which allows target specific decisions.
Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may cause extra overhead at run time. This option has the same effect as option assume realloc_lhs.
If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option assume norealloc_lhs.
The align toggle changes how data elements are aligned. Variables and arrays are analyzed and memory layout can be altered. Specifying array32byte will look for opportunities to transform and reailgn arrays to 32byte boundaries.
Make all local variables AUTOMATIC. Same as -automatic
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
Compiles for a 64-bit (LP64) data model.
Sets the language dialect to conform to the indicated C++ standard.
Sets the language dialect to conform to the indicated C standard.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
May generate instructions for processors that support the specified Intel processor or microarchitecture code name. Optimizes for the specified Intel processor or microarchitecture code name.
Enable O3 optimizations plus more aggressive optimizations, such as -ffinite-math-only –no-prec-div
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
-Wno-implicit-int is needed to allow the compiler to accept invalid C code where the type specifier is missing. With this diagnostic disabled, the missing type will be interpreted as `int`, as in C89 (the last version of C in which implicit type specifiers were allowed).
Specifies preferred vector width for auto-vectorization. Defaults to 'none' which allows target specific decisions.
Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may cause extra overhead at run time. This option has the same effect as option assume realloc_lhs.
If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option assume norealloc_lhs.
The align toggle changes how data elements are aligned. Variables and arrays are analyzed and memory layout can be altered. Specifying array32byte will look for opportunities to transform and reailgn arrays to 32byte boundaries.
Make all local variables AUTOMATIC. Same as -automatic
Specify build time link path for jemalloc 64bit built to support the CPU 2017 build. See jemalloc.net for more information.
Linker toggle to specify jemalloc linker library. See jemalloc.net for more information.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Enable O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enable optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
Enable optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
Enable optimizations for speed and disables some optimizations that increase code size and affect speed.
To limit code size, this option:
The O1 option may improve performance for applications with very large code size, many branches, and execution time not dominated by code within loops.
-O1 sets the following options:Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
-fno-builtin disables inline expansion for all intrinsic functions.
This option trades off floating-point precision for speed by removing the restriction to conform to the IEEE standard.
EBP is used as a general-purpose register in optimizations.
Places each function in its own COMDAT section.
Flushes denormal results to zero.
"cpupower frequency-set" provides a simplified mechanism to adjust processor frequencies when cpu frequency scaling is enabled in the OS. See the cpupower-frequency-set man page for details.Here is a brief description of options used in the config file. By default, settings are applied to all logical cpus in the system.Frequencies can be passed in Hz, kHz (default), MHz, GHz, or THz by postfixing the value with the desired unit name, without any space. Available frequencies and governors can be determined with "cpupower frequency-info".
The 'tuned' provides a number of predefined profiles for typical use cases. The 'tuned-adm' command is used to change settings of the tuned daemon. The tuned-adm command can query current settings, list available profiles, recommend a tuning profile for the system, change profiles directly, or turn off tuning.
throughput-performance: For typical throughput performance tuning. Disables power saving mechanisms and enables sysctl settings that improve the throughput performance of disk and network I/O. CPU governor is set to performance and CPU energy performance bias is set to performance. Disk readahead values are increased.
latency-performance: For low latency performance tuning. Disables power saving mechanisms. CPU governor is set to performance and locked to the low C states. CPU energy performance bias to performance.
balanced: Default profile provides balanced power saving and performance. It enables CPU and disk plugins of tuned and makes the conservative governor is active and also sets the CPU energy performance bias to normal. It also enables power saving on audio and graphics card.
powersave: Maximal power saving for whole system. It sets the CPU governor to ondemand governor and energy performance bias to powersave. It also enable power saving on USB, SATA, audio and graphics card.
accelerator-performance: Throughput performance based tuning with disabled higher latency STOP states.
desktop: Optimize for the desktop use-case.
hpc-compute: Optimize for HPC compute workloads.
intel-sst: Configure for Intel Speed Select Base Frequency.
network-latency: Optimize for deterministic performance at the cost of increased power consumption, focused on low latency network performance.
network-throughput: Optimize for streaming network throughput, generally only necessary on older CPUs or 40G+ networks.
optimize-serial-console: Optimize for serial console use.
virtual-guest: Optimize for running inside a virtual guest.
virtual-host: Optimize for running KVM guests.
This BIOS option allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern-recognition algorithm In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Intel Turbo boost Technology, Enabling this option allows the processor cores to automatically increase its frequency and increasing performance if it is running below power, temperature.
The Intel Hyper-Threading knob has been renamed Enable LP [Global] to represent the number of logical processors (LP). Enabling this option allows to use processor resources more efficiently, enabling multiple threads to run on each core and increases processor throughput, improving overall performance on threaded software.
Single LP: Run a single logical processor per core.
Values for this BIOS setting can be: Custom: Allows the user to setup all of the BIOS options according to their requirement. Performance: Maximize the performance of the server. Efficiency: Maximize the power efficiency of the server. Load Balance: The system's performance and power consumption will be adjusted automatically according to the loading.
Enable or disable reporting of the CPU C6 State (ACPI C3) to the OS.
When set to Enabled, the processor is allowed to switch to nimimum performance and save power when idle.
Sub NUMA Clustering (SNC) is a feature for breaking up the LLC into disjoint clusters based on address range,with each cluster bound to a subset of the memory controllers in the system.It improves average latency to the LLC.
Values for this BIOS option can be:
Disabled: SNC disabled will support 1-cluster and 4-way IMC interleave.
Enable SNC2 (2-clusters): SNC2 Enabled supports 2-clusters SNC and 2-way IMC interleave.
Enable SNC4 (4-clusters): SNC4 Enabled supports 4-clusters SNC and 1-way IMC interleave.
The last level cache (LLC) prefetch is a prefetcher added to the Intel Xeon Scalable processor family as a result of the non-inclusive cache architecture. The LLC prefetcher is an additional prefetch mechanism on top of the existing prefetchers that prefetch data into the core Data Cache Unit (DCU) and Mid-Level Cache (MLC or second-level cache (L2)). Enabling LLC prefetch gives the core prefetcher the ability to prefetch data directly into the LLC without necessarily filling into the L1 and L2 cache. In some cases, setting this option to disabled can improve performance.
Values for this BIOS option can be:
Disabled: Disables the LLC prefetcher. The other core prefetchers are unaffected.
Enabled: Gives the core prefetcher the ability to prefetch data directly to the LLC.
Adaptive Double Device Data Correction (ADDDC), which is an enhanced feature to DDDC. This function is used to correct data errors on two memory particles, ADDDC still has single-particle multi-bit error correction capability after the first particle failure occurs and is replaced.
Values for this BIOS option can be:
Enabled: Enable the ADDDC Sparing function.
Disabled: Disable the ADDDC Sparing function.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact info@spec.org
Copyright 2017-2023 Standard Performance Evaluation Corporation
Tested with SPEC CPU2017 v1.1.9.
Report generated on 2023-10-11 12:27:50 by SPEC CPU2017 flags formatter v5178.