clang is a C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
flang is a Fortran compiler which encompasses parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Flang will stop before doing a full link.
flang is a Fortran compiler which encompasses parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Flang will stop before doing a full link.
clang is a C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
clang++ C++ compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
clang is a C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
flang is a Fortran compiler which encompasses parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Flang will stop before doing a full link.
clang is a C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
flang is a Fortran compiler which encompasses parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Flang will stop before doing a full link.
flang is a Fortran compiler which encompasses parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Flang will stop before doing a full link.
clang is a C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
clang++ C++ compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
clang is a C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
flang is a Fortran compiler which encompasses parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Flang will stop before doing a full link.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that Fortran functions called from C should have their names lower-cased.
The binary datasets for some of the Fortran benchmarks in the SPEC CPU suites are stored in big-endian format. This option is necessary for those datasets to be read in correctly.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Fortran to C symbol naming. C symbol names are lower case with one underscore. _symbol
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
For netcdf, if defined uses Fortran symbol names ABC as abc_
The binary datasets for some of the Fortran benchmarks in the SPEC CPU suites are stored in big-endian format. This option is necessary for those datasets to be read in correctly.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that Fortran functions called from C should have their names lower-cased.
The binary datasets for some of the Fortran benchmarks in the SPEC CPU suites are stored in big-endian format. This option is necessary for those datasets to be read in correctly.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Fortran to C symbol naming. C symbol names are lower case with one underscore. _symbol
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
For netcdf, if defined uses Fortran symbol names ABC as abc_
The binary datasets for some of the Fortran benchmarks in the SPEC CPU suites are stored in big-endian format. This option is necessary for those datasets to be read in correctly.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Generate code for a 64-bit environment. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture. The compiler generates AMD64, INTEL64, x86-64 64-bit ABI. The default on a 32-bit host is 32-bit ABI. The default on a 64-bit host is 64-bit ABI if the target platform specified is 64-bit, otherwise the default is 32-bit.
This flag enables vectorization of loops with complex control flow that can not be vectorized by loop and slp vectorizers.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Force the alignment of all blocks that have no fall-through predecessors (i.e. don't add nops that are executed). In log2 format (e.g 4 means align on 16B boundaries).
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective.
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Use the given vector functions library.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, the __STDC_IEC_559__ macro is ignored even if set by the system headers.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Generate output files in LLVM formats suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Analyzes the whole program to determine if the structures in the code can be peeled and if pointer or integer fields in the structure can be compressed. If feasible, this optimization transforms the code to enable these improvements. This transformation is likely to improve cache utilization and memory bandwidth. This, in turn, is expected to improve the scalability of programs executed on multiple cores.
This is effective only under -flto as whole program analysis is required to perform this optimization. You can choose different levels of aggressiveness with which this optimization can be applied to your application with 1 being the least aggressive and 7 being the most aggressive level.
Possible values:
Note:
fstruct-layout=4 and fstruct-layout=5 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of safe compression of integer fields in structures. Going from fstruct-layout=4 to fstruct-layout=5 may result in higher performance if the pointer values are such that the pointers can be compressed to 16-bits.
fstruct-layout=6 and fstruct-layout=7 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of compression of integer fields in structures. These are similar to fstruct-layout=4 and fstruct-layout=5, but here, the integer fields of the structures are always compressed from 64-bits to 32-bits without any safety guarantee.
Sets the limit at which loops will be unrolled. For example, if unroll threshold is set to 100 then only loops with 100 or fewer instructions will be unrolled.
Sets the compiler's inlining threshold level to the value passed as the argument. The inline threshold is used in the inliner heuristics to decide which functions should be inlined.
This option enables an optimization that transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
This option enables an optimization that generates and calls specialized function versions when the loops inside function are vectorizable and the arguments are not aliased with each other. This optimization helps in function inlining and vectorization.
This option enables the GVN hoist pass, which is used to hoist computations from branches.
This option enables an optimization that does the slp vectorization across basic blocks. The SLP vectorizer vectorizes instructions within basic blocks. The global slp vectorizer analyzes instructions across basic blocks and vectorizes them.
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Instructs the linker to use the first definition encountered for a symbol, and ignore all others.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Instructs the compiler to link with the OpenMP runtime libraries.
Instructs the compiler to link with AMD-supported optimized math library.
Use the jemalloc library, which is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with flang Fortran runtime libraries.
Generate code for a 64-bit environment. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture. The compiler generates AMD64, INTEL64, x86-64 64-bit ABI. The default on a 32-bit host is 32-bit ABI. The default on a 64-bit host is 64-bit ABI if the target platform specified is 64-bit, otherwise the default is 32-bit.
This optimization enables generation of prefetch instructions for tightly coupled loops
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This flag enables vectorization of loops with complex control flow that can not be vectorized by loop and slp vectorizers.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Force the alignment of all blocks that have no fall-through predecessors (i.e. don't add nops that are executed). In log2 format (e.g 4 means align on 16B boundaries).
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
flang option to preserve array access information for linearized arrays.
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective.
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Use the given vector functions library.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, the __STDC_IEC_559__ macro is ignored even if set by the system headers.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Allocate local variables on the stack, thus allowing recursion. SAVEd, data-initialized, or namelist members are always allocated statically, regardless of the setting of this switch.
Enables fusion of adjacent tiled loops as a part of loop tiling transformation. This option is set to false by default.
This option instructs the compiler to unroll loops wherever possible.
Run cleanup optimization passes after vectorization.
Enables loop strength reduction for nested loop structures. By default, the compiler will do loop strength reduction only for the innermost loop.
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
This option enables an optimization that does the slp vectorization across basic blocks. The SLP vectorizer vectorizes instructions within basic blocks. The global slp vectorizer analyzes instructions across basic blocks and vectorizes them.
This option enables the classical loop interchange or loop permutation transformation on a loop nest.
This transformation reorders the loops in a multi-dimensional loop nest, checking for various legality criteria in the process. The goal is to find a reordering of the loops such that the number of loop invariant expressions that may be hoisted out from an inner loop to a loop at a higher level is maximized.
This transformation is off by default and may be enabled by using this option.
When loop interchange is enabled, this option enables the heuristic which determines the best reordering of the loops in a multi-dimensional loop nest such that the number of invariant expressions that may be hoisted out from an inner level loop to an outer one is maximized. This option is off by default.
Instructs the linker to use the first definition encountered for a symbol, and ignore all others.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Instructs the compiler to link with the OpenMP runtime libraries.
Instructs the compiler to link with AMD-supported optimized math library.
Use the jemalloc library, which is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with flang Fortran runtime libraries.
Generate code for a 64-bit environment. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture. The compiler generates AMD64, INTEL64, x86-64 64-bit ABI. The default on a 32-bit host is 32-bit ABI. The default on a 64-bit host is 64-bit ABI if the target platform specified is 64-bit, otherwise the default is 32-bit.
This optimization enables generation of prefetch instructions for tightly coupled loops
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This flag enables vectorization of loops with complex control flow that can not be vectorized by loop and slp vectorizers.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Force the alignment of all blocks that have no fall-through predecessors (i.e. don't add nops that are executed). In log2 format (e.g 4 means align on 16B boundaries).
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective.
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Use the given vector functions library.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, the __STDC_IEC_559__ macro is ignored even if set by the system headers.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Generate output files in LLVM formats suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Analyzes the whole program to determine if the structures in the code can be peeled and if pointer or integer fields in the structure can be compressed. If feasible, this optimization transforms the code to enable these improvements. This transformation is likely to improve cache utilization and memory bandwidth. This, in turn, is expected to improve the scalability of programs executed on multiple cores.
This is effective only under -flto as whole program analysis is required to perform this optimization. You can choose different levels of aggressiveness with which this optimization can be applied to your application with 1 being the least aggressive and 7 being the most aggressive level.
Possible values:
Note:
fstruct-layout=4 and fstruct-layout=5 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of safe compression of integer fields in structures. Going from fstruct-layout=4 to fstruct-layout=5 may result in higher performance if the pointer values are such that the pointers can be compressed to 16-bits.
fstruct-layout=6 and fstruct-layout=7 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of compression of integer fields in structures. These are similar to fstruct-layout=4 and fstruct-layout=5, but here, the integer fields of the structures are always compressed from 64-bits to 32-bits without any safety guarantee.
Sets the limit at which loops will be unrolled. For example, if unroll threshold is set to 100 then only loops with 100 or fewer instructions will be unrolled.
Sets the compiler's inlining threshold level to the value passed as the argument. The inline threshold is used in the inliner heuristics to decide which functions should be inlined.
This option enables an optimization that transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
This option enables an optimization that generates and calls specialized function versions when the loops inside function are vectorizable and the arguments are not aliased with each other. This optimization helps in function inlining and vectorization.
This option enables the GVN hoist pass, which is used to hoist computations from branches.
This option enables an optimization that does the slp vectorization across basic blocks. The SLP vectorizer vectorizes instructions within basic blocks. The global slp vectorizer analyzes instructions across basic blocks and vectorizes them.
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
flang option to preserve array access information for linearized arrays.
Allocate local variables on the stack, thus allowing recursion. SAVEd, data-initialized, or namelist members are always allocated statically, regardless of the setting of this switch.
Enables fusion of adjacent tiled loops as a part of loop tiling transformation. This option is set to false by default.
This option instructs the compiler to unroll loops wherever possible.
Run cleanup optimization passes after vectorization.
Enables loop strength reduction for nested loop structures. By default, the compiler will do loop strength reduction only for the innermost loop.
This option enables the classical loop interchange or loop permutation transformation on a loop nest.
This transformation reorders the loops in a multi-dimensional loop nest, checking for various legality criteria in the process. The goal is to find a reordering of the loops such that the number of loop invariant expressions that may be hoisted out from an inner loop to a loop at a higher level is maximized.
This transformation is off by default and may be enabled by using this option.
When loop interchange is enabled, this option enables the heuristic which determines the best reordering of the loops in a multi-dimensional loop nest such that the number of invariant expressions that may be hoisted out from an inner level loop to an outer one is maximized. This option is off by default.
Instructs the linker to use the first definition encountered for a symbol, and ignore all others.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Instructs the compiler to link with the OpenMP runtime libraries.
Instructs the compiler to link with AMD-supported optimized math library.
Use the jemalloc library, which is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with flang Fortran runtime libraries.
Generate code for a 64-bit environment. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture. The compiler generates AMD64, INTEL64, x86-64 64-bit ABI. The default on a 32-bit host is 32-bit ABI. The default on a 64-bit host is 64-bit ABI if the target platform specified is 64-bit, otherwise the default is 32-bit.
This option controls whether AOCC emits (true) or does not emit (false) a vzeroupper instruction before a transfer of control flow. Not emitting the vzeroupper instruction can help minimize the AVX to SSE transition penalty.
This flag enables vectorization of loops with complex control flow that can not be vectorized by loop and slp vectorizers.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Force the alignment of all blocks that have no fall-through predecessors (i.e. don't add nops that are executed). In log2 format (e.g 4 means align on 16B boundaries).
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective.
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Use the given vector functions library.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, the __STDC_IEC_559__ macro is ignored even if set by the system headers.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Generate output files in LLVM formats suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Analyzes the whole program to determine if the structures in the code can be peeled and if pointer or integer fields in the structure can be compressed. If feasible, this optimization transforms the code to enable these improvements. This transformation is likely to improve cache utilization and memory bandwidth. This, in turn, is expected to improve the scalability of programs executed on multiple cores.
This is effective only under -flto as whole program analysis is required to perform this optimization. You can choose different levels of aggressiveness with which this optimization can be applied to your application with 1 being the least aggressive and 7 being the most aggressive level.
Possible values:
Note:
fstruct-layout=4 and fstruct-layout=5 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of safe compression of integer fields in structures. Going from fstruct-layout=4 to fstruct-layout=5 may result in higher performance if the pointer values are such that the pointers can be compressed to 16-bits.
fstruct-layout=6 and fstruct-layout=7 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of compression of integer fields in structures. These are similar to fstruct-layout=4 and fstruct-layout=5, but here, the integer fields of the structures are always compressed from 64-bits to 32-bits without any safety guarantee.
Sets the limit at which loops will be unrolled. For example, if unroll threshold is set to 100 then only loops with 100 or fewer instructions will be unrolled.
Sets the compiler's inlining threshold level to the value passed as the argument. The inline threshold is used in the inliner heuristics to decide which functions should be inlined.
This option enables an optimization that transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
This option enables an optimization that generates and calls specialized function versions when the loops inside function are vectorizable and the arguments are not aliased with each other. This optimization helps in function inlining and vectorization.
This option enables the GVN hoist pass, which is used to hoist computations from branches.
This option enables an optimization that does the slp vectorization across basic blocks. The SLP vectorizer vectorizes instructions within basic blocks. The global slp vectorizer analyzes instructions across basic blocks and vectorizes them.
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
This optimization does partial unswitching of loops where some part of the unswitched control flow remains in the loop.
Sets the limit at which loops will be unrolled. For example, if unroll threshold is set to 100 then only loops with 100 or fewer instructions will be unrolled.
Sets the compiler's inlining heuristics to an aggressive level by increasing the inline thresholds.
Sets the limit at which loops will be unswitched. For example, if unswitch threshold is set to 100 then only loops with 100 or fewer instructions will be unswtched.
Run the loop rerolling pass.
This option enables aggressive loop unswitching heuristic (including -enable-partial-unswitch) based on the usage of the branch conditional values. Loop unswitching leads to code-bloat. Code-bloat can be minimized if the hoisted condition is executed more often. This heuristic prioritizes the conditions based on the number of times they are used within the loop. The heuristic can be controlled with the following options:
Enables unswitching of a loop with respect to a branch conditional value (B), where B appears in at least <n> compares in the loop. This option is enabled with -aggressive-loop-unswitch. Default value is 3.
Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-min-count=<n> where n is a positive integer and lower value of <n> facilitates more unswitching.
Enables unswitching of a loop with respect to a branch conditional value (B), where B appears in at most <n> compares in the loop. This option is enabled with -aggressive-loop-unswitch. Default value is 6.
Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-max-count=<n> where n is a positive integer and higher value of <n> facilitates more unswitching.
Note: These options may facilitate more unswitching in some of the workloads. Since loop-unswitching inherently leads to code bloat, facilitating more unswitching may significantly increase the code size and hence may also lead to longer compilation times.
Run cleanup optimization passes after vectorization.
Converts the call to floating point exponent version of pow to its integer exponent version if the floating-point exponent can be converted to integer. This option is set to true by default.
flang option to preserve array access information for linearized arrays.
Allocate local variables on the stack, thus allowing recursion. SAVEd, data-initialized, or namelist members are always allocated statically, regardless of the setting of this switch.
Enables fusion of adjacent tiled loops as a part of loop tiling transformation. This option is set to false by default.
This option instructs the compiler to unroll loops wherever possible.
Enables loop strength reduction for nested loop structures. By default, the compiler will do loop strength reduction only for the innermost loop.
This option enables the classical loop interchange or loop permutation transformation on a loop nest.
This transformation reorders the loops in a multi-dimensional loop nest, checking for various legality criteria in the process. The goal is to find a reordering of the loops such that the number of loop invariant expressions that may be hoisted out from an inner loop to a loop at a higher level is maximized.
This transformation is off by default and may be enabled by using this option.
When loop interchange is enabled, this option enables the heuristic which determines the best reordering of the loops in a multi-dimensional loop nest such that the number of invariant expressions that may be hoisted out from an inner level loop to an outer one is maximized. This option is off by default.
Instructs the linker to use the first definition encountered for a symbol, and ignore all others.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Instructs the compiler to link with the OpenMP runtime libraries.
Instructs the compiler to link with AMD-supported optimized math library.
Use the jemalloc library, which is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with flang Fortran runtime libraries.
Generate code for a 64-bit environment. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture. The compiler generates AMD64, INTEL64, x86-64 64-bit ABI. The default on a 32-bit host is 32-bit ABI. The default on a 64-bit host is 64-bit ABI if the target platform specified is 64-bit, otherwise the default is 32-bit.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Force the alignment of all blocks that have no fall-through predecessors (i.e. don't add nops that are executed). In log2 format (e.g 4 means align on 16B boundaries).
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Enables all the optimizations from -O3 along with other aggressive optimizations that may violate strict compliance with language standards. Refer to the AOCC options document for the language you're using for more detailed documentation of optimizations enabled under -Ofast.
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Use the given vector functions library.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, the __STDC_IEC_559__ macro is ignored even if set by the system headers.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Generate output files in LLVM formats suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Analyzes the whole program to determine if the structures in the code can be peeled and if pointer or integer fields in the structure can be compressed. If feasible, this optimization transforms the code to enable these improvements. This transformation is likely to improve cache utilization and memory bandwidth. This, in turn, is expected to improve the scalability of programs executed on multiple cores.
This is effective only under -flto as whole program analysis is required to perform this optimization. You can choose different levels of aggressiveness with which this optimization can be applied to your application with 1 being the least aggressive and 7 being the most aggressive level.
Possible values:
Note:
fstruct-layout=4 and fstruct-layout=5 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of safe compression of integer fields in structures. Going from fstruct-layout=4 to fstruct-layout=5 may result in higher performance if the pointer values are such that the pointers can be compressed to 16-bits.
fstruct-layout=6 and fstruct-layout=7 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of compression of integer fields in structures. These are similar to fstruct-layout=4 and fstruct-layout=5, but here, the integer fields of the structures are always compressed from 64-bits to 32-bits without any safety guarantee.
Sets the limit at which loops will be unrolled. For example, if unroll threshold is set to 100 then only loops with 100 or fewer instructions will be unrolled.
This option enables an optimization that transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
This option enables an optimization that generates and calls specialized function versions when the loops inside function are vectorizable and the arguments are not aliased with each other. This optimization helps in function inlining and vectorization.
Sets the compiler's inlining threshold level to the value passed as the argument. The inline threshold is used in the inliner heuristics to decide which functions should be inlined.
This option enables the GVN hoist pass, which is used to hoist computations from branches.
This option enables an optimization that does the slp vectorization across basic blocks. The SLP vectorizer vectorizes instructions within basic blocks. The global slp vectorizer analyzes instructions across basic blocks and vectorizes them.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Instructs the compiler to link with the OpenMP runtime libraries.
Instructs the compiler to link with AMD-supported optimized math library.
Use the jemalloc library, which is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with flang Fortran runtime libraries.
Generate code for a 64-bit environment. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture. The compiler generates AMD64, INTEL64, x86-64 64-bit ABI. The default on a 32-bit host is 32-bit ABI. The default on a 64-bit host is 64-bit ABI if the target platform specified is 64-bit, otherwise the default is 32-bit.
This optimization enables generation of prefetch instructions for tightly coupled loops
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Force the alignment of all blocks that have no fall-through predecessors (i.e. don't add nops that are executed). In log2 format (e.g 4 means align on 16B boundaries).
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Enables all the optimizations from -O3 along with other aggressive optimizations that may violate strict compliance with language standards. Refer to the AOCC options document for the language you're using for more detailed documentation of optimizations enabled under -Ofast.
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Use the given vector functions library.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, the __STDC_IEC_559__ macro is ignored even if set by the system headers.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Allocate local variables on the stack, thus allowing recursion. SAVEd, data-initialized, or namelist members are always allocated statically, regardless of the setting of this switch.
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
This option enables an optimization that does the slp vectorization across basic blocks. The SLP vectorizer vectorizes instructions within basic blocks. The global slp vectorizer analyzes instructions across basic blocks and vectorizes them.
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Instructs the compiler to link with the OpenMP runtime libraries.
Instructs the compiler to link with AMD-supported optimized math library.
Use the jemalloc library, which is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with flang Fortran runtime libraries.
Generate code for a 64-bit environment. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture. The compiler generates AMD64, INTEL64, x86-64 64-bit ABI. The default on a 32-bit host is 32-bit ABI. The default on a 64-bit host is 64-bit ABI if the target platform specified is 64-bit, otherwise the default is 32-bit.
This optimization enables generation of prefetch instructions for tightly coupled loops
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Force the alignment of all blocks that have no fall-through predecessors (i.e. don't add nops that are executed). In log2 format (e.g 4 means align on 16B boundaries).
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Enables all the optimizations from -O3 along with other aggressive optimizations that may violate strict compliance with language standards. Refer to the AOCC options document for the language you're using for more detailed documentation of optimizations enabled under -Ofast.
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Use the given vector functions library.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, the __STDC_IEC_559__ macro is ignored even if set by the system headers.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Generate output files in LLVM formats suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Allocate local variables on the stack, thus allowing recursion. SAVEd, data-initialized, or namelist members are always allocated statically, regardless of the setting of this switch.
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
This option enables an optimization that does the slp vectorization across basic blocks. The SLP vectorizer vectorizes instructions within basic blocks. The global slp vectorizer analyzes instructions across basic blocks and vectorizes them.
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Instructs the compiler to link with the OpenMP runtime libraries.
Instructs the compiler to link with AMD-supported optimized math library.
Use the jemalloc library, which is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with flang Fortran runtime libraries.
Generate code for a 64-bit environment. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture. The compiler generates AMD64, INTEL64, x86-64 64-bit ABI. The default on a 32-bit host is 32-bit ABI. The default on a 64-bit host is 64-bit ABI if the target platform specified is 64-bit, otherwise the default is 32-bit.
This optimization enables generation of prefetch instructions for tightly coupled loops
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Force the alignment of all blocks that have no fall-through predecessors (i.e. don't add nops that are executed). In log2 format (e.g 4 means align on 16B boundaries).
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
Enables all the optimizations from -O3 along with other aggressive optimizations that may violate strict compliance with language standards. Refer to the AOCC options document for the language you're using for more detailed documentation of optimizations enabled under -Ofast.
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Use the given vector functions library.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, the __STDC_IEC_559__ macro is ignored even if set by the system headers.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Generate output files in LLVM formats suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Analyzes the whole program to determine if the structures in the code can be peeled and if pointer or integer fields in the structure can be compressed. If feasible, this optimization transforms the code to enable these improvements. This transformation is likely to improve cache utilization and memory bandwidth. This, in turn, is expected to improve the scalability of programs executed on multiple cores.
This is effective only under -flto as whole program analysis is required to perform this optimization. You can choose different levels of aggressiveness with which this optimization can be applied to your application with 1 being the least aggressive and 7 being the most aggressive level.
Possible values:
Note:
fstruct-layout=4 and fstruct-layout=5 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of safe compression of integer fields in structures. Going from fstruct-layout=4 to fstruct-layout=5 may result in higher performance if the pointer values are such that the pointers can be compressed to 16-bits.
fstruct-layout=6 and fstruct-layout=7 are derived from fstruct-layout=2 and fstruct-layout=3 respectively with the added feature of compression of integer fields in structures. These are similar to fstruct-layout=4 and fstruct-layout=5, but here, the integer fields of the structures are always compressed from 64-bits to 32-bits without any safety guarantee.
Sets the limit at which loops will be unrolled. For example, if unroll threshold is set to 100 then only loops with 100 or fewer instructions will be unrolled.
This option enables an optimization that transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
This option enables an optimization that generates and calls specialized function versions when the loops inside function are vectorizable and the arguments are not aliased with each other. This optimization helps in function inlining and vectorization.
Sets the compiler's inlining threshold level to the value passed as the argument. The inline threshold is used in the inliner heuristics to decide which functions should be inlined.
This option enables the GVN hoist pass, which is used to hoist computations from branches.
This option enables an optimization that does the slp vectorization across basic blocks. The SLP vectorizer vectorizes instructions within basic blocks. The global slp vectorizer analyzes instructions across basic blocks and vectorizes them.
This option enables an optimization that generates and calls specialized function versions when they are called with constant arguments. This optimization helps in function inlining.
Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is used to decide the invariants that will be hoisted during loop invariant code motion.
This option eliminates the array computations based on their usage. The computations on unused array elements and computations on zero valued array elements are eliminated with this optimization. -flto as whole program analysis is required to perform this optimization.
Possible values:
flang option to preserve array access information for linearized arrays.
Allocate local variables on the stack, thus allowing recursion. SAVEd, data-initialized, or namelist members are always allocated statically, regardless of the setting of this switch.
Enables fusion of adjacent tiled loops as a part of loop tiling transformation. This option is set to false by default.
This option instructs the compiler to unroll loops wherever possible.
Run cleanup optimization passes after vectorization.
Enables loop strength reduction for nested loop structures. By default, the compiler will do loop strength reduction only for the innermost loop.
This option enables the classical loop interchange or loop permutation transformation on a loop nest.
This transformation reorders the loops in a multi-dimensional loop nest, checking for various legality criteria in the process. The goal is to find a reordering of the loops such that the number of loop invariant expressions that may be hoisted out from an inner loop to a loop at a higher level is maximized.
This transformation is off by default and may be enabled by using this option.
When loop interchange is enabled, this option enables the heuristic which determines the best reordering of the loops in a multi-dimensional loop nest such that the number of invariant expressions that may be hoisted out from an inner level loop to an outer one is maximized. This option is off by default.
Definition of this macro indicates that compilation for parallel operation is enabled, and that any OpenMP directives or pragmas will be visible to the compiler. The behavior of this macro is overridden if -DSPEC_SUPPRESS_OPENMP also appears in the list of compilation flags.
Enable handling of OpenMP directives and generate parallel code. The openmp library to be linked can be specified through -fopenmp=library option.
Instructs the compiler to link with the OpenMP runtime libraries.
Instructs the compiler to link with AMD-supported optimized math library.
Use the jemalloc library, which is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with flang Fortran runtime libraries.
Do not warn about unused command line arguments.
Do not warn about functions defined with a return type that defaults to "int" or which return something other than what they were declared to.
Do not warn about unused command line arguments.
Do not warn about functions defined with a return type that defaults to "int" or which return something other than what they were declared to.
Do not warn about unused command line arguments.
Do not warn about functions defined with a return type that defaults to "int" or which return something other than what they were declared to.
Do not warn about unused command line arguments.
Do not warn about functions defined with a return type that defaults to "int" or which return something other than what they were declared to.
Do not warn about unused command line arguments.
Do not warn about functions defined with a return type that defaults to "int" or which return something other than what they were declared to.
Do not warn about unused command line arguments.
Do not warn about functions defined with a return type that defaults to "int" or which return something other than what they were declared to.
Do not warn about unused command line arguments.
Do not warn about functions defined with a return type that defaults to "int" or which return something other than what they were declared to.
Do not warn about unused command line arguments.
Do not warn about functions defined with a return type that defaults to "int" or which return something other than what they were declared to.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Somewhere between -O0 and -O2.
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective.
This optimization does partial unswitching of loops where some part of the unswitched control flow remains in the loop.
Using numactl
to bind processes and memory to cores
For multi-copy runs or single copy runs on systems with multiple sockets, it is advantageous to bind a process to a
particular core. Otherwise, the OS may arbitrarily move your process from one core to another. This can affect
performance. To help, SPEC allows the use of a "submit" command where users can specify a utility to use to bind
processes. We have found the utility 'numactl
' to be the best choice.
numactl
runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a
command and inherited by all of its children. The numactl
flag "--physcpubind
" specifies
which core(s) to bind the process. "-l
" instructs numactl
to keep a process's memory on the
local node while "-m
" specifies which node(s) to place a process's memory. For full details on using
numactl
, please refer to your Linux documentation, 'man numactl
'
Note that some older versions of numactl
incorrectly interpret application arguments as its own. For
example, with the command "numactl --physcpubind=0 -l a.out -m a
", numactl
will interpret
a.out
's "-m
" option as its own "-m
" option. To work around this problem, we put
the command to be run in a shell script and then run the shell script using numactl
. For example:
"echo 'a.out -m a' > run.sh ; numactl --physcpubind=0 bash run.sh
"
Transparent Huge Pages (THP)
THP is an abstraction layer that automates most aspects of creating, managing, and using huge pages. It is designed to hide much of the complexity in using huge pages from system administrators and developers. Huge pages increase the memory page size from 4 kilobytes to 2 megabytes. This provides significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents huge pages being allocated, the kernel will assign smaller 4k pages instead. Most recent Linux OS releases have THP enabled by default.
THP usage is controlled by the sysfs setting /sys/kernel/mm/transparent_hugepage/enabled
.
Possible values:
The SPEC CPU benchmark codes themselves never explicitly request huge pages, as the mechanism to do that is OS-specific and can change over time. Libraries such as jemalloc which are used by the benchmarks may explicitly request huge pages, and use of such libraries can make the "madvise" setting relevant and useful.
When no huge pages are immediately available and one is requested, how the system handles the request for THP creation is
controlled by the sysfs setting /sys/kernel/mm/transparent_hugepage/defrag
.
Possible values:
An application that "always" requests THP often can benefit from waiting for an allocation until those huge pages can be assembled.
For more information see the Linux transparent hugepage documentation.
ulimit -s <n>
Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.
ulimit -l <n>
Sets the maximum size of memory that may be locked into physical memory.
powersave -f
(on SuSE)
Makes the powersave daemon set the CPUs to the highest supported frequency.
/etc/init.d/cpuspeed stop
(on Red Hat)
Disables the cpu frequency scaling program in order to set the CPUs to the highest supported frequency.
LD_LIBRARY_PATH
An environment variable that indicates the location in the filesystem of bundled libraries to use when running the benchmark binaries.
kernel/numa_balancing
This OS setting controls automatic NUMA balancing on memory mapping and process placement. NUMA balancing incurs overhead for no benefit on workloads that are already bound to NUMA nodes.
Possible settings:
For more information see the numa_balancing
entry in the
Linux sysctl documentation.
kernel/randomize_va_space
(ASLR)
This setting can be used to select the type of process address space randomization. Defaults differ based on whether the architecture supports ASLR, whether the kernel was built with the CONFIG_COMPAT_BRK option or not, or the kernel boot options used.
Possible settings:
norandmaps
" parameter.CONFIG_COMPAT_BRK
option is enabled at kernel build time.CONFIG_COMPAT_BRK
is
disabled.
Disabling ASLR can make process execution more deterministic and runtimes more consistent.
For more information see the randomize_va_space
entry in the
Linux sysctl documentation.
MALLOC_CONF
The jemalloc library has tunable parameters, many of which may be changed at run-time via several mechanisms, one of which
is the MALLOC_CONF
environment variable. Other methods, as well as the order in which they're referenced,
are detailed in the jemalloc documentation's TUNING section.
The options that can be tuned at run-time are everything in the jemalloc documentation's
MALLCTL NAMESPACE section that begins with
"opt.
".
The options that may be encountered in SPEC CPU 2017 results are detailed here:
retain:true
- Causes unused virtual memory to
be retained for later reuse rather than discarding it. This is the default for 64-bit Linux.thp:never
- Attempts to never utilize huge pages
by using MADV_NOHUGEPAGE
on all mappings. This option has no effect except when THP is set to
"madvise".PGHPF_ZMEM
An environment variable used to initialize the allocated memory. Setting PGHPF_ZMEM to "Yes" has the effect of initializing all allocated memory to zero.
GOMP_CPU_AFFINITY
This environment variable is used to set the thread affinity for threads spawned by OpenMP.
OMP_DYNAMIC
This environment variable is defined as part of the OpenMP standard. Setting it to "false" prevents the OpenMP runtime from dynamically adjusting the number of threads to use for parallel execution.
For more information, see chapter 4 ("Environment Variables") in the OpenMP 4.5 Specification.
OMP_SCHEDULE
This environment variable is defined as part of the OpenMP standard. Setting it to "static" causes loop iterations to be assigned to threads in round-robin fashion in the order of the thread number.
For more information, see chapter 4 ("Environment Variables") in the OpenMP 4.5 Specification.
OMP_STACKSIZE
This environment variable is defined as part of the OpenMP standard and controls the size of the stack for threads created by OpenMP.
For more information, see chapter 4 ("Environment Variables") in the OpenMP 4.5 Specification.
OMP_THREAD_LIMIT
This environment variable is defined as part of the OpenMP standard and limits the maximum number of OpenMP threads that can be created.
For more information, see chapter 4 ("Environment Variables") in the OpenMP 4.5 Specification.
LIBOMP_NUM_HIDDEN_HELPER_THREADS
target nowait
is supported via hidden helper task, which is a task not bound to any parallel region.
A hidden helper team with a number of threads is created when the first hidden helper task is encountered.
The number of threads can be configured via the environment variable LIBOMP_NUM_HIDDEN_HELPER_THREADS
. The
default is 8. If LIBOMP_NUM_HIDDEN_HELPER_THREADS
is 0, the hidden helper task is disabled and support
falls back to a regular OpenMP task. The hidden helper task can also be disabled by setting the environment variable
LIBOMP_USE_HIDDEN_HELPER_TASK=OFF
.
Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.
Launching a process with numactl --interleave=all sets the memory interleave policy so that memory will be allocated using round robin on nodes. When memory cannot be allocated on the current interleave target fall back to other nodes.
The command "echo 1> /proc/sys/vm/drop_caches" is used to free up the filesystem page cache.
For multi-copy runs or single copy runs on systems with multiple sockets, it is advantageous to bind a process to a particular core. Otherwise, the OS may arbitrarily move your process from one core to another. This can affect performance. To help, SPEC allows the use of a "submit" command where users can specify a utility to use to bind processes. We have found the utility 'numactl' to be the best choice.
numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a command and inherited by all of its children. The numactl flag "--physcpubind" specifies which core(s) to bind the process. "-l" instructs numactl to keep a process memory on the local node while "-m" specifies which node(s) to place a process memory. For full details on using numactl, please refer to your Linux documentation, 'man numactl'
This is the percentage of the total amount of free and reclaimable memory. When the amount of dirty pagecache exceeds this percentage, writeback threads start writing back dirty memory. This setting can help Linux disk caching and performance by setting the percentage of system memory that can be filled with dirty pages. This can be set through a command like "echo 40 > /proc/sys/vm/dirty_background_ratio".
This control is used to define how aggressively the kernel swaps out anonymous memory relative to pagecache and other caches. Increasing the value increases the amount of swapping. The default value is 60. A value of 1 tells the kernel to only swap processes to disk if absolutely necessary. This can be set through a command like "echo 1 > /proc/sys/vm/swappiness".
This parameter controls whether memory reclaim is performed on a local NUMA node even if there is plenty of memory free on other nodes. This parameter is automatically turned on on machines with more pronounced NUMA characteristics. To tell the kernel to free local node memory rather than grabbing free memory from remote nodes, use a command like "echo 1 > /proc/sys/vm/zone_reclaim_mode".
A percentage value. When this percentage of total system memory is modified, the system begins writing the modifications to disk with the pdflush operation. The default value is 20 percent. To tell the kernel to free local node memory rather than grabbing free memory from remote nodes, use a command like "echo 1 > /proc/sys/vm/zone_reclaim_mode". This can be set through a command "echo 8 > /proc/sys/vm/dirty_ratio".
In order to take advantage of large pages, your system must be configured to use large pages. To configure your system for huge pages perform the following steps:
Create a mount point for the huge pages: "mkdir /mnt/hugepages" The huge page file system needs to be mounted when the systems reboots. Add the following to a system boot configuration file before any services are started: "mount -t hugetlbfs nodev /mnt/hugepages" Set vm/nr_hugepages=N in your /etc/sysctl.conf file where N is the maximum number of pages the system may allocate. Reboot to have the changes take effect. (Not necessary on some operating systems like RedHat Enterprise Linux 5.5).
Note that further information about huge pages may be found in your Linux documentation file: /usr/src/linux/Documentation/vm/hugetlbpage.txt
Transparent Huge Pages
On RedHat EL 6 and later, Transparent Hugepages increases the memory page size from 4 kilobytes to 2 megabytes. Transparent Hugepages provides significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead. Hugepages are used by default if /sys/kernel/mm/redhat_transparent_hugepage/enabled is set to always.
Set this environment variable to "yes" to enable applications to use large pages.
Specify stack size to be allocated for each thread.
KMP_AFFINITY = < physical | logical >, starting-core-id specifies the static mapping of user threads to physical cores. For example, if you have a system configured with 8 cores, OMP_NUM_THREADS=8 and KMP_AFFINITY=physical,0 then thread 0 will mapped to core 0, thread 1 will be mapped to core 1, and so on in a round-robin fashion. KMP_AFFINITY = granularity=fine,scatter The value for the environment variable KMP_AFFINITY affects how the threads from an auto-parallelized program are scheduled across processors. Specifying granularity=fine selects the finest granularity level, causes each OpenMP thread to be bound to a single thread context. This ensures that there is only one thread per core on cores supporting HyperThreading Technology Specifying scatter distributes the threads as evenly as possible across the entire system. Hence a combination of these two options, will spread the threads evenly across sockets, with one thread per physical core.
Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8
This option allows the processor to use a given performance level as the max cap, or to let the processor operate as close to the thermal design point (TDP) as possible. Values for this BIOS option can be: Power: Processor operates as close to the TDP as possible. Performance: Processor operates at a capped performance level as the max operating state.
NUMA nodes per socket (NPS) field allows you to configure the memory NUMA domains per socket. The configuration can consist of one whole domain (NPS1), two domains (NPS2), or four domains (NPS4). In the case of a two-socket platform, an additional NPS profile is available to have whole system memory to be mapped as single NUMA domain (NPS0).
Enabling this option allows the chipset to defer memory transactions and process them out of order for optimal performance.
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux. The description of the elements of the command are:
/usr/bin/taskset [options] [mask] [pid | command [arg] ... ] :Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact info@spec.org
Copyright 2017-2022 Standard Performance Evaluation Corporation
Tested with SPEC CPU2017 v1.1.8.
Report generated on 2022-12-08 18:59:06 by SPEC CPU2017 flags formatter v5178.