CPU2017 Flag Description
Hewlett Packard Enterprise ProLiant DL365 Gen10 Plus (2.60 GHz, AMD EPYC 7513)

Test sponsored by HPE

Compilers: AMD Optimizing C/C++ Compiler Suite


Base Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks


Peak Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks


Base Portability Flags

600.perlbench_s

602.gcc_s

605.mcf_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

641.leela_s

648.exchange2_s

657.xz_s


Peak Portability Flags

600.perlbench_s

602.gcc_s

605.mcf_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

641.leela_s

648.exchange2_s

657.xz_s


Base Optimization Flags

C benchmarks

C++ benchmarks

Fortran benchmarks


Peak Optimization Flags

C benchmarks

600.perlbench_s

602.gcc_s

605.mcf_s

625.x264_s

657.xz_s

C++ benchmarks

620.omnetpp_s

623.xalancbmk_s

631.deepsjeng_s

641.leela_s

Fortran benchmarks

648.exchange2_s


Base Other Flags

C benchmarks

C++ benchmarks

Fortran benchmarks


Peak Other Flags

C benchmarks

C++ benchmarks

Fortran benchmarks


Implicitly Included Flags

This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.


Commands and Options Used to Submit Benchmark Runs

Using numactl to bind processes and memory to cores

For multi-copy runs or single copy runs on systems with multiple sockets, it is advantageous to bind a process to a particular core. Otherwise, the OS may arbitrarily move your process from one core to another. This can affect performance. To help, SPEC allows the use of a "submit" command where users can specify a utility to use to bind processes. We have found the utility 'numactl' to be the best choice.

numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a command and inherited by all of its children. The numactl flag "--physcpubind" specifies which core(s) to bind the process. "-l" instructs numactl to keep a process's memory on the local node while "-m" specifies which node(s) to place a process's memory. For full details on using numactl, please refer to your Linux documentation, 'man numactl'

Note that some older versions of numactl incorrectly interpret application arguments as its own. For example, with the command "numactl --physcpubind=0 -l a.out -m a", numactl will interpret a.out's "-m" option as its own "-m" option. To work around this problem, we put the command to be run in a shell script and then run the shell script using numactl. For example: "echo 'a.out -m a' > run.sh ; numactl --physcpubind=0 bash run.sh"


Shell, Environment, and Other Software Settings

Transparent Huge Pages (THP)

THP is an abstraction layer that automates most aspects of creating, managing, and using huge pages. THP is designed to hide much of the complexity in using huge pages from system administrators and developers, as normal huge pages must be assigned at boot time, can be difficult to manage manually, and often require significant changes to code in order to be used effectively. Most recent Linux OS releases have THP enabled by default.

ulimit -s <n>

Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.

ulimit -l <n>

Sets the maximum size of memory that may be locked into physical memory.

powersave -f (on SuSE)

Makes the powersave daemon set the CPUs to the highest supported frequency.

/etc/init.d/cpuspeed stop (on Red Hat)

Disables the cpu frequency scaling program in order to set the CPUs to the highest supported frequency.

LD_LIBRARY_PATH

An environment variable that indicates the location in the filesystem of bundled libraries to use when running the benchmark binaries.

kernel/randomize_va_space

This option can be used to select the type of process address space randomization that is used in the system, for architectures that support this feature.

MALLOC_CONF

An environment variable set to tune the jemalloc allocation strategy during the execution of the binaries. This environment variable setting is not needed when building the binaries on the system under test.

PGHPF_ZMEM

An environment variable used to initialize the allocated memory. Setting PGHPF_ZMEM to "Yes" has the effect of initializing all allocated memory to zero.

GOMP_CPU_AFFINITY

This environment variable is used to set the thread affinity for threads spawned by OpenMP.

OMP_DYNAMIC

This environment variable is defined as part of the OpenMP standard. Setting it to "false" prevents the OpenMP runtime from dynamically adjusting the number of threads to use for parallel execution.

For more information, see chapter 4 ("Environment Variables") in the OpenMP 4.5 Specification.

OMP_SCHEDULE

This environment variable is defined as part of the OpenMP standard. Setting it to "static" causes loop iterations to be assigned to threads in round-robin fashion in the order of the thread number.

For more information, see chapter 4 ("Environment Variables") in the OpenMP 4.5 Specification.

OMP_STACKSIZE

This environment variable is defined as part of the OpenMP standard and controls the size of the stack for threads created by OpenMP.

For more information, see chapter 4 ("Environment Variables") in the OpenMP 4.5 Specification.

OMP_THREAD_LIMIT

This environment variable is defined as part of the OpenMP standard and limits the maximum number of OpenMP threads that can be created.

For more information, see chapter 4 ("Environment Variables") in the OpenMP 4.5 Specification.


Operating System Tuning Parameters

Operating System (OS) Application/Service Tuning:

The following OS tunes could've been applied to better optimize performance of some areas of the system:

OS Kernel Parameter Tuning:

The following Linux Kernel parameters were tuned to better optimize performance of some areas of the system:

Linux Huge Page settings:

If one prefers not to use Transparent Hugepages, one can always setup Huge Pages by following the below steps:

Note that further information about huge pages may be found in your Linux documentation file: /usr/src/linux/Documentation/vm/hugetlbpage.txt

Environment Variables:

The following Linux envrionment variables that could've possibly been tuned to better optimize performance of some areas of the system:


Firmware / BIOS / Microcode Settings

Firmware Settings:

One or more of the following settings may have been set. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.

Last updated June 21, 2021.


Flag description origin markings:

[user] Indicates that the flag description came from the user flags file.
[suite] Indicates that the flag description came from the suite-wide flags file.
[benchmark] Indicates that the flag description came from a per-benchmark flags file.

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revQ.html,
http://www.spec.org/cpu2017/flags/aocc300-flags-A1.html.

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revQ.xml,
http://www.spec.org/cpu2017/flags/aocc300-flags-A1.xml.


For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact info@spec.org
Copyright 2017-2021 Standard Performance Evaluation Corporation
Tested with SPEC CPU2017 v1.1.5.
Report generated on 2021-09-01 14:21:52 by SPEC CPU2017 flags formatter v5178.