Copyright © 2016 Intel Corporation. All Rights Reserved.
Invoke the Intel C compiler.
Invoke the Intel C++ compiler.
Invoke the Intel Fortran compiler.
This macro specifies that the target system uses the LP64 data model; specifically, that integers are 32 bits, while longs and pointers are 64 bits.
This macro indicates that the benchmark is being compiled on an AMD64-compatible system running the Linux operating system.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This flag can be set for SPEC compilation for LINUX using default compiler.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Compiles for a 64-bit (LP64) data model.
Invoke Intel C++ compiler next generation code generator.
Sets the language dialect to conform to the indicated C standard.
This option instructs compiler to align branches and fused branches on 32 byte boundaries
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
Code is optimized for Intel(R) processors with support for CORE-AVX512 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Enable O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enable optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Build time link path for libraries supplied with the compiler (for example, the qkmalloc library).
Linker toggle to specify qkmalloc linker library. See https://software.intel.com/en-us/articles/intel-c-compiler-190-for-linux-release-notes-for-intel-parallel-studio-xe-2019#custalloc for more information.
Compiles for a 64-bit (LP64) data model.
Invoke Intel C++ compiler next generation code generator.
This option instructs compiler to align branches and fused branches on 32 byte boundaries
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
Code is optimized for Intel(R) processors with support for CORE-AVX512 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Enable O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enable optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
Enable fast math mode. This option may yield faster code for programs that do not require the guarantees of exact implementation of IEEE or ISO rules/specifications for math functions.
Performs link time optimizations, which is also known as Interprocedural Optimizations.
Generate floating-point arithmetic for selected unit unit. Here use scalar floating-point instructions present in the SSE instruction set
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Build time link path for libraries supplied with the compiler (for example, the qkmalloc library).
Linker toggle to specify qkmalloc linker library. See https://software.intel.com/en-us/articles/intel-c-compiler-190-for-linux-release-notes-for-intel-parallel-studio-xe-2019#custalloc for more information.
Compiles for a 64-bit (LP64) data model.
This option instructs compiler to align branches and fused branches on 32 byte boundaries
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
Code is optimized for Intel(R) processors with support for CORE-AVX512 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Enable O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enable optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
Option standard-realloc-lhs (the default), tells the compiler that when the left-hand side of an assignment is an allocatable object, it should be reallocated to the shape of the right-hand side of the assignment before the assignment occurs. This is the current Fortran Standard definition. This feature may cause extra overhead at run time. This option has the same effect as option assume realloc_lhs.
If you specify nostandard-realloc-lhs, the compiler uses the old Fortran 2003 rules when interpreting assignment statements. The left-hand side is assumed to be allocated with the correct shape to hold the right-hand side. If it is not, incorrect behavior will occur. This option has the same effect as option assume norealloc_lhs.
The align toggle changes how data elements are aligned. Variables and arrays are analyzed and memory layout can be altered. Specifying array32byte will look for opportunities to transform and reailgn arrays to 32byte boundaries.
Make all local variables AUTOMATIC. Same as -automatic
This option instructs compiler to align branches and fused branches on 32 byte boundaries
Build time link path for libraries supplied with the compiler (for example, the qkmalloc library).
Linker toggle to specify qkmalloc linker library. See https://software.intel.com/en-us/articles/intel-c-compiler-190-for-linux-release-notes-for-intel-parallel-studio-xe-2019#custalloc for more information.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Enable optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
Enable optimizations for speed and disables some optimizations that increase code size and affect speed.
To limit code size, this option:
The O1 option may improve performance for applications with very large code size, many branches, and execution time not dominated by code within loops.
-O1 sets the following options:Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
-fno-builtin disables inline expansion for all intrinsic functions.
This option trades off floating-point precision for speed by removing the restriction to conform to the IEEE standard.
EBP is used as a general-purpose register in optimizations.
Places each function in its own COMDAT section.
Flushes denormal results to zero.
Enabled for Windows XP and Linux (OS optimized for Hyper-Threading Technology) and Disabled for other OS (OS not optimized for Hyper-Threading Technology). When Disabled only one thread per enabled core is enabled.
Sets up an address range used to monitor write-back stores. Enables a logical processor to enter into an optimized state while waiting for a write-back store to the address range set up by the MONITOR instruction.
When enabled, a VMM can utilize the additional hardware capabilities provided by Vanderpool Technology
The LLC prefetcher is an additional prefetch mechanism on top of the existing prefetchers that prefetch data into the core Data Cache Unit (DCU) and Mid-Level Cache (MLC). Enabling LLC prefetch gives the core prefetcher the ability to prefetch data directly into the LLC without necessarily filling into the MLC.
Switch processor power management features. If value "Custom" is set, Customer can define the values of all power management setup items.
Allows the OS or BIOS to control the Energy Performance Bias.
This BIOS option allows for processor performance and power optmization. Available optoins are:
Controls the BIOS to report the CPU C6 State (ACPI C3) to the operating system. During the CPU C6 State, the power to all cache is turned off. Available options are:
Power saving feature where, when enabled, idle processor cores will halt.
The Hardware P-State setting allows the user to select between OS and hardware-controlled P-states. Selecting Native Mode allows the OS to choose a P-state. Selecting Out of Band Mode allows the hardware to autonomously choose a P-state without OS guidance. Selecting Native Mode with No Legacy Support functions as Native Mode with no support for older hardware.
Sub-NUMA Clusters (SNC) is a feature that provides similar localization benefits as Cluster-On-Die (COD), without some of COD's downsides. SNC breaks up the LLC into disjoint clusters based on address range, with each cluster bound to a subset of the memory controllers in the system. SNC improves average latency to the LLC.
This feature allows an LLC read request to be speculatively duplicated and sent concurrently to the appropriate MC (Memory Controller). These speculative MC reads are sent when an LLC miss is likely based on recent LLC history. If an LLC miss does occur, the MC read is already in flight so the requested data will be returned more quickly.
When this feature is set to Enable, the KTI prefetcher will preload the L1 cache with data deemed relevant to allow the memory read to start earlier on a DDR bus in an effort to reduce latency. Available options are Disable and Enable.
This feature allows the user to set the threshold for the Interrupt Request (IRQ) signal, which handles hardware interruptions. There are 5 options: "Disable", "Auto", "Low", "Medium", and "High". This BIOS option changes the threshold number of requests in remote/local-to-remote request queues to cause the throttling.
The in-memory directory has three states: I, A, and S. I (invalid) state means the data is clean and does not exist in any other socket's cache. The A (snoopAll) state means the data may exist in another socket in exclusive or modified state. S (Shared) state means the data is clean and may be shared across one or more socket's caches. When doing a read to memory, if the directory line is in the A state we must snoop all the other sockets because another socket may have the line in modified state. If this is the case, the snoop will return the modified data. However, it may be the case that a line is read in A state and all the snoops come back a miss. This can happen if another socket read the line earlier and then silently dropped it from its cache without modifying it. Available options are:
In the Skylake-SP non-inclusive cache scheme, MLC evictions are filled into the LLC. When lines are evicted from the MLC, the core can flag them as "dead" (i.e., not likely to be read again). The LLC has the option to drop dead lines and not fill them in the LLC. If the LLC Dead Line Alloc feature is disabled, dead lines will always be dropped and will never fill into the LLC. This can help save space in the LLC and prevent the LLC from evicting useful data. However, if the LLC Dead Line Alloc feature is enabled, the LLC can opportunistically fill dead lines into the LLC if there is free space available. Available options are "Auto", "Enable" and "Disable".
Set to POR enforce Plan Of Record restrictions for DDR4 frequency and voltage programming. Memory speeds will be capped at Intel guidelines. Disabling allows user selection of additional supported memory speeds. Available options are "POR" and "Disable".
Set the maximum memory frequency for onboard memory modules. Available options are "Auto", "1866", "2000", "2133", "2400", "2666", "2933".
This BIOS option controls the interleaving between the Integrated Memory Controllers (IMCs). Available options are:
Which is the enhanced feature to SDDC. Single Device Data Correction (SDDC) checks and corrects single-bit or multiple-bit (4-bit max.) memory faults that affect an entire single x4 DRAM device. SDDC Plus One will spare the faulty DRAM device out after an SDDC event has occurred. After the event, the SDDC+1 ECC mode is activated to protect against any additional memory failure caused by a 'single-bit' error in the same memory rank.
Adaptive Double Device Data Correction (ADDDC) Sparing detects the predetermined threshold for correctable errors, copying the contents of the failing DIMM to spare memory. The failing DIMM or memory rank will then be disabled. Available options are:
Enable or disable the ability to proactively search the system memory, repairing correctable errors.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact info@spec.org
Copyright 2017-2020 Standard Performance Evaluation Corporation
Tested with SPEC CPU2017 v1.1.0.
Report generated on 2020-12-28 09:45:10 by SPEC CPU2017 flags formatter v5178.