CPU2017 Flag Description
NEC Corporation Express5800/GT110j (Intel Xeon E-2224)

Copyright © 2016 Intel Corporation. All Rights Reserved.


Base Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Peak Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Base Portability Flags

503.bwaves_r

507.cactuBSSN_r

508.namd_r

510.parest_r

511.povray_r

519.lbm_r

521.wrf_r

526.blender_r

527.cam4_r

538.imagick_r

544.nab_r

549.fotonik3d_r

554.roms_r


Peak Portability Flags

503.bwaves_r

507.cactuBSSN_r

508.namd_r

510.parest_r

511.povray_r

519.lbm_r

521.wrf_r

526.blender_r

527.cam4_r

538.imagick_r

544.nab_r

549.fotonik3d_r

554.roms_r


Base Optimization Flags

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Peak Optimization Flags

C benchmarks

519.lbm_r

538.imagick_r

544.nab_r

C++ benchmarks

508.namd_r

510.parest_r

Fortran benchmarks

503.bwaves_r

549.fotonik3d_r

554.roms_r

Benchmarks using both Fortran and C

Benchmarks using both C and C++

511.povray_r

526.blender_r

Benchmarks using Fortran, C, and C++


Implicitly Included Flags

This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.


Commands and Options Used to Submit Benchmark Runs

submit= MYMASK=`printf '0x%x' $((1<<$SPECCOPYNUM))`; /usr/bin/taskset $MYMASK $command
When running multiple copies of benchmarks, the SPEC config file feature submit is used to cause individual jobs to be bound to specific processors. This specific submit command, using taskset, is used for Linux64 systems without numactl.
Here is a brief guide to understanding the specific command which will be found in the config file:
submit= numactl --localalloc --physcpubind=$SPECCOPYNUM $command
When running multiple copies of benchmarks, the SPEC config file feature submit is used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux64 systems with support for numactl.
Here is a brief guide to understanding the specific command which will be found in the config file:

Shell, Environment, and Other Software Settings

numactl --interleave=all "runspec command"
Launching a process with numactl --interleave=all sets the memory interleave policy so that memory will be allocated using round robin on nodes. When memory cannot be allocated on the current interleave target fall back to other nodes.
KMP_STACKSIZE
Specify stack size to be allocated for each thread.
KMP_AFFINITY
Syntax: KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]
The value for the environment variable KMP_AFFINITY affects how the threads from an auto-parallelized program are scheduled across processors.
It applies to binaries built with -qopenmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows).
modifier:
    granularity=fine Causes each OpenMP thread to be bound to a single thread context.
type:
    compact Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as possible to the thread context where the <n> OpenMP thread was placed.
    scatter Specifying scatter distributes the threads as evenly as possible across the entire system.
permute: The permute specifier is an integer value controls which levels are most significant when sorting the machine topology map. A value for permute forces the mappings to make the specified number of most significant levels of the sort the least significant, and it inverts the order of significance.
offset: The offset specifier indicates the starting position for thread assignment.

Please see the Thread Affinity Interface article in the Intel Composer XE Documentation for more details.

Example: KMP_AFFINITY=granularity=fine,scatter
Specifying granularity=fine selects the finest granularity level and causes each OpenMP or auto-par thread to be bound to a single thread context.
This ensures that there is only one thread per core on cores supporting HyperThreading Technology
Specifying scatter distributes the threads as evenly as possible across the entire system.
Hence a combination of these two options, will spread the threads evenly across sockets, with one thread per physical core.

Example: KMP_AFFINITY=compact,1,0
Specifying compact will assign the n+1 thread to a free thread context as close as possible to thread n.
A default granularity=core is implied if no granularity is explicitly specified.
Specifying 1,0 sets permute and offset values of the thread assignment.
With a permute value of 1, thread n+1 is assigned to a consecutive core. With an offset of 0, the process's first thread 0 will be assigned to thread 0.
The same behavior is exhibited in a multisocket system.
OMP_NUM_THREADS
Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -qopenmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8
Set stack size to unlimited
The command "ulimit -s unlimited" is used to set the stack size limit to unlimited.
Free the file system page cache
The command "echo 1> /proc/sys/vm/drop_caches" is used to free up the filesystem page cache.

Red Hat Specific features

Transparent Huge Pages
On RedHat EL 6 and later, Transparent Hugepages increase the memory page size from 4 kilobytes to 2 megabytes. Transparent Hugepages provide significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead.
Hugepages are used by default unless the /sys/kernel/mm/redhat_transparent_hugepage/enabled field is changed from its RedHat EL6 default of 'always'.

Operating System Tuning Parameters

OS Tuning

irqbalance:

Disabled through "systemctrl stop irqbalance.service". Depending on the workload involved, the irqbalance service reassigns various IRQ's to system CPUs. Though this service might help in some situations, disabling it can also help environments which need to minimize or eliminate latency to more quickly respond to events.

sched_cfs_bandwidth_slice_us (Default = 5000):

When Completely Fair Scheduler bandwidth control is in use, this parameter controls the amount of run-time (bandwidth) transferred to a run queue from the task's control group bandwidth pool. Small values allow the global bandwidth to be shared in a fine-grained manner among tasks, larger values reduce transfer overhead.

sched_migration_cost_ns (Default = 500000):

Amount of time after the last execution that a task is considered to be "cache hot" in migration decisions. A "hot" task is less likely to be migrated to another CPU, so increasing this variable reduces task migrations.


Firmware / BIOS / Microcode Settings

Firmware Settings

One or more of the following settings may have been set. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.

Hyper-Threading (Default = Enabled):

This feature allows enabling or disabling of logical processor cores on processors supporting Intel Hyper-Threading (HT). When enabled, each physical processor core operates as two logical processor cores. When disabled, each physical core operates as only one logical processor core. Enabling this option can improve overall performance for applications that benefit from a higher processor core count.

VT-x (Default = Enabled):

When enabled, a hypervisor or operating system supporting this option can use hardware capabilities provided by Intel virtualization technology. Some hypervisors require that you enable VT-x. You can leave this set to Enabled even if you are not using a hypervisor or an operating system that uses this option.

Hardware Prefetcher (Default = Enabled):

This BIOS option allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern-recognition algorithm. In some cases, setting this option to disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.

Adjacent Cache Line Prefetch (Default = Enabled):

This option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within a 128-byte sector that contains the data needed due to a cache line miss. In some cases, setting this option to disabled can improve performance. Typically, setting this option to enabled provides better performance. Only disable this option after performing application benchmarking to verify improved performance in the environment.

Energy Efficient P-state (Default = Enabled):

This BIOS option allows to set whether the operating system selects the energy efficiency policy in the CPU.

Energy Efficient Turbo (Default = Enabled):

This feature will opportunistically lower the turbo frequency to increase energy efficiency. This option set to disabled in overclocking situations where turbo frequency must remain constant.

Last updated November 5, 2019.


Flag description origin markings:

[user] Indicates that the flag description came from the user flags file.
[suite] Indicates that the flag description came from the suite-wide flags file.
[benchmark] Indicates that the flag description came from a per-benchmark flags file.

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/Intel-ic19.0u1-official-linux64.2019-07-09.html,
http://www.spec.org/cpu2017/flags/NEC-Platform-Settings-T110j-RevF.html.

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic19.0u1-official-linux64.2019-07-09.xml,
http://www.spec.org/cpu2017/flags/NEC-Platform-Settings-T110j-RevF.xml.


For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact info@spec.org
Copyright 2017-2019 Standard Performance Evaluation Corporation
Tested with SPEC CPU2017 v1.1.0.
Report generated on 2019-11-26 12:49:14 by SPEC CPU2017 flags formatter v5178.