CPU2006 Flag Description
Hewlett Packard Enterprise ProLiant DL385 Gen10 (2.20 GHz, AMD EPYC 7601)

Test sponsored by HPE

Compilers: x86 Open64 Compiler Suite



Base Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Peak Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Base Portability Flags

410.bwaves

416.gamess

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

444.namd

447.dealII

450.soplex

453.povray

454.calculix

459.GemsFDTD

465.tonto

470.lbm

481.wrf

482.sphinx3


Peak Portability Flags

410.bwaves

416.gamess

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

444.namd

453.povray

454.calculix

459.GemsFDTD

465.tonto

470.lbm

481.wrf


Base Optimization Flags

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Peak Optimization Flags

C benchmarks

433.milc

470.lbm

482.sphinx3

C++ benchmarks

444.namd

447.dealII

450.soplex

453.povray

Fortran benchmarks

410.bwaves

416.gamess

434.zeusmp

437.leslie3d

459.GemsFDTD

465.tonto

Benchmarks using both Fortran and C

435.gromacs

436.cactusADM

454.calculix

481.wrf


Implicitly Included Flags

This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.


Commands and Options Used to Submit Benchmark Runs

Using numactl to bind processes and memory to cores

For multi-copy runs or single copy runs on systems with multiple sockets, it is advantageous to bind a process to a particular core. Otherwise, the OS may arbitrarily move your process from one core to another. This can effect performance. To help, SPEC allows the use of a "submit" command where users can specify a utility to use to bind processes. We have found the utility 'numactl' to be the best choice.

numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a command and inherited by all of its children. The numactl flag "--physcpubind" specifies which core(s) to bind the process. "-l" instructs numactl to keep a process memory on the local node while "-m" specifies which node(s) to place a process memory. For full details on using numactl, please refer to your Linux documentation, 'man numactl'

Note that some versions of numactl, particularly the version found on SLES 10, we have found that the utility incorrectly interprets application arguments as it's own. For example, with the command "numactl --physcpubind=0 -l a.out -m a", numactl will interpret a.out's "-m" option as it's own "-m" option. To work around this problem, a user can put the command to be run in a shell script and then run the shell script using numactl. For example: "echo 'a.out -m a' > run.sh ; numactl --physcpubind=0 bash run.sh"

numactl is also used to invoke runspec so that mememory usage is spread evenly among NUMA nodes. This is accomplished as follows: runspec_command="numactl --interleave=all runspec"


Shell, Environment, and Other Software Settings

Linux Huge Page settings

In order to take full advantage of using x86 Open64's huge page runtime library, your system must be configured to use huge pages. It is safe to run binaries compiled with "-HP" on systems not configured to use huge pages, however, you will not benefit from the performance improvements huge pages offer. To configure your system for huge pages perform the following steps:

Note that further information about huge pages may be found in your Linux documentation file: /usr/src/linux/Documentation/vm/hugetlbpage.txt

HUGETLB_LIMIT

For the x86 Open64 compiler, the maximum number of huge pages an application is allowed to use can be set at run time via the environment variable HUGETLB_LIMIT. If not set, then the process may use all available huge pages when compiled with "-HP (or -HUGEPAGE)" or a maximum of n pages where the value of n is set via the compile time flag "-HP:limit=n".

Transparent Huge Pages (THP)

THP is an abstraction layer that automates most aspects of creating, managing, and using huge pages. THP is designed to hides much of the complexity in using huge pages from system administrators and developers, as normal huge pages must be assigned at boot time, can be difficult to manage manually, and often require significant changes to code in order to be used effectively.

Set transparent_hugepage boot parameter

In the file /boot/grub/menu.lst, add the boot parameter "transparent_hugepage=never" to the OS you plan to select during boot, to instruct it to disable Transparent Huge Pages (THP). A reboot is required for this setting to take effect.

Set Ubuntu power governor to performance

To produce the best performance on Ubuntu, the system power governor must be set to performance as follows:

ulimit -s <n>

Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.

ulimit -l <n>

Sets the maximum size of memory that may be locked into physical memory.

dirty_ratio

Sets the percentage limit of system memory that can hold dirty cache data until it is written out via pdflush.

swappiness

The swappiness value can range from 1 to 100. A value of 100 will cause the kernel to swap out inactive processes frequently in favor of file system performance, resulting in large disk cache sizes. A value of 1 tells the kernel to only swap processes to disk if absolutely necessary.

zone_reclaim_mode

When zone_reclaim_mode is set to 0, the kernel will allocate memory from a remote node, rather than try to reclaim memory from the local node. A value of 1 will cause the page allocator to reclaim local page caches that are not currently used before allocating remote node memory.

sync, drop_caches

Used in conjunction, the two commands, sync and drop_caches, free disk cache memory for other uses. sync writes dirty pages to disk, while drop_caches reclaims clean disk cache pages.

OMP_NUM_THREADS

Sets the maximum number of OpenMP parallel threads auto-parallelized (-apo) applications may use.

O64_OMP_AFFINITY_MAP

Specifies the thread-CPU relationship when the operating system's affinity mechanism is used to assign OpenMP threads to CPUs.

O64_OMP_SPIN_USER_LOCK

Specifies whether or not to use the user-level spin mechanism for OpenMP locks. If the variable is set to TRUE then user-level spin mechanisms are used. If the variable is set to FALSE then pthread mutexes are used. The default if the variable is not set is the same as FALSE.

powersave -f (on SuSE)

Makes the powersave daemon set the CPUs to the highest supported frequency.

/etc/init.d/cpuspeed stop (on Red Hat)

Disables the cpu frequency scaling program in order to set the CPUs to the highest supported frequency.

LD_LIBRARY_PATH

An environment variable set to include the x86 Open64 and SmartHeap libraries used during compilation of the binaries. This environment variable setting is not needed when building the binaries on the system under test.

kernel/randomize_va_space

This option can be used to select the type of process address space randomization that is used in the system, for architectures that support this feature. 0 - Turn the process address space randomization off. This is the default for architectures that do not support this feature anyways, and kernels that are booted with the "norandmaps" parameter. 1 - Make the addresses of mmap base, stack and VDSO page randomized. This, among other things, implies that shared libraries will be loaded to random addresses. Also for PIE-linked binaries, the location of code start is randomized. This is the default if the CONFIG_COMPAT_BRK option is enabled. 2 - Additionally enable heap randomization. This is the default if CONFIG_COMPAT_BRK is disabled.

O64_OMP_SPIN_COUNT

Specify the number of times the spin loops will spin at user-level before falling back to operating system schedule/reschedule mechanisms. The default value is 20000.


Operating System Tuning Parameters

OS Tuning

ulimit -s [n | unlimited] (Linux)

Set the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.

Zone Reclaim:

Zone reclaim allows the reclaiming of pages from a zone if the number of free pages falls below a watermark even if other zones still have enough pages available. Reclaiming a page can be more beneficial than taking the performance penalties that are associated with allocating a page on a remote zone, especially for NUMA machines.

Performance Governors (Linux)

In-kernel CPU frequency governors are pre-configured power schemes for the CPU. The CPUfreq governors use P-states to change frequencies and lower power consumption. The dynamic governors can switch between CPU frequencies, based on CPU utilization to allow for power savings while not sacrificing performance.

To set the governor, use the following commmand: "cpupower frequency-set -r -g {desired_governor}"

Disabling Linux services.

The following Linux services were disabled to minimize tasks that may consume CPU cycles:

irqbalance

Disabled through "service irqbalance stop". Depending on the workload involved, the irqbalance service reassigns various IRQ's to system CPUs. Though this service might help in some situations, disabling it can also help environments which need to minimize or eliminate latency to more quickly respond to events.

numa_balancing

Disabled through "echo 0 > /proc/sys/kernel/numa_balancing". This feature will automatically migrate data on demand so memory nodes are aligned to the local CPU that is accessing data. Depending on the workload involved, enabling this can boost the performance if the workload performs well on NUMA hardware. If the workload is statically set to balance between nodes, then this service may not provide a benefit.

Tuning Kernel parameters.

The following Linux Kernel parameters were tuned to better optimize performance of some areas of the system:

vm.dirty_background_ratio

Set through "echo 40 > /proc/sys/vm/dirty_background_ratio". This setting can help Linux disk caching and performance by setting the percentage of system memory that can be filled with dirty pages.

vm.dirty_ratio

Set through "echo 40 > /proc/sys/vm/dirty_ratio". This setting is the absolute maximum amount of system memory that can be filled with dirty pages before everything must get committed to disk.


Firmware / BIOS / Microcode Settings

Firmware Settings

One or more of the following settings may have been set. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.

AMD SMT Option (Default = Enabled):

This feature allows enabling or disabling of logical processor cores on processors supporting AMD SMT. When enabled, each physical processor core operates as two logical processor cores. When disabled, each physical core operates as only one logical processor core. Enabling this option can improve overall performance for applications that benefit from a higher processor core count.

Thermal Configuration (Default = Optimal Cooling):

This feature allows the user to select the fan cooling solution for the system. Values for this BIOS option can be:

Performance Determinism (Default = Performance Deterministic):

This option allows the processor to use a given performance level as the max cap, or to let the processor operate as close to the thermal design point (TDP) as possible. Values for this BIOS option can be:

Processor Power and Utilization Monitoring (Default = Enabled):

This BIOS option allows the enabling/disabling of iLo Processor State Mode Switching and Insight Power Management Processor Utilization Monitoring.

When set to disabled, the system will also set the Power Regulator mode to Static High Performance mode and the HP Power Profile mode to Custom. This option may be useful in some environments that require absolute minimum latency.

Workload Profile (Default = General Power Efficient Compute):

This option allows a user to choose a workload profile that best fits the user`s needs. The workload profiles control many power and performance settings that are relevant to general workload areas. Values for this BIOS option can be:

Minimum Processor Idle Power Core C-State (Default = C6 State):

This option can only be configured if the Workload Profile is set to Custom, or this option is not a dependent value for the Workload Profile. This feature selects the processor's lowest idle power state (C-state) that the operating system uses. The higher the C-state, the lower the power usage of that idle state (C6 is the lowest power idle state supported by the processor). Values for this setting can be:

Memory Patrol Scrubbing (Default = Enabled):

This option allows for correction of soft memory errors. Over the length of system runtime, the risk of producing multi-bit and uncorrected errors is reduced with this option. Values for this BIOS setting can be:

First created October 30, 2017.


Flag description origin markings:

[user] Indicates that the flag description came from the user flags file.
[suite] Indicates that the flag description came from the suite-wide flags file.
[benchmark] Indicates that the flag description came from a per-benchmark flags file.

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2006/flags/x86-openflags-rate-revA-I.html,
http://www.spec.org/cpu2006/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revB.html.

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2006/flags/x86-openflags-rate-revA-I.xml,
http://www.spec.org/cpu2006/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revB.xml.


For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2017 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.2.
Report generated on Mon Nov 20 12:43:43 2017 by SPEC CPU2006 flags formatter v6906.