Copyright © 2016 Intel Corporation. All Rights Reserved.
Invoke the Intel C compiler 17.0 for IA32 applications when the environment is set for Intel 64 compilation. Defaults to -std=gnu89. Conforms to ISO C90 plus GNU extensions.
Invoke the Intel C++ compiler 17.0 for IA32 applications when the environment is set for Intel 64 compilation.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro indicates that the benchmark is being compiled on an Intel IA32-compatible system running the Linux operating system.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
Portability changes for Linux
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This macro determines which file system interface will be used. Common file i/o calls like stat() and readdir() return off_t data that may or may not fit within a 32bit data structure if this flag is not used. With _FILE_OFFSET_BITS=64, types like off_t have a size of 64 bits. The truncation that happens without _FILE_OFFSET_BITS=64 has been observed to yield intermittent failures.
Ex: RHEL7 distributions format partitions using xfs. Runtime errors are observed on such systems because sometimes returned values will not fit into 32bit data types that are a mismatch for xfs.
See the gnuc feature test macros article for more information.
This flag can be set for SPEC compilation for Linux using default compiler.
Code is optimized for Intel(R) processors with support for AVX2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
This option determines whether the use of basic algebraic expansions of some arithmetic operations involving data of type COMPLEX is enabled.
This option supports the PREFETCHW instruction in Intel microarchitecture code name Broadwell and later.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
Enables more aggressive unrolling heuristics
This option determines whether the performance headers directory is added to the include path search list. The performance headers directory is added if you specify [Q]use-intel-optimized-headers. Appropriate libraries are also linked in, as needed, for proper functionality.
Enables or disables a compiler-generated Matrix Multiply (matmul) library call. Option -qopt-matmul is the replacement option for -opt-matmul, which is deprecated.
Tells the compiler to substitute a call to _intel_fast_calloc() for a call to calloc().
Directs the compiler to inline calloc() calls as malloc()/memset()
The compiler adds setup code in the C/C++/Fortran main function to enable optimal malloc algorithms:
The two parameters, M_MMAP_MAX and M_TRIM_THRESHOLD, are described below
Function: int mallopt (int param, int value) When calling mallopt, the param argument specifies the parameter to be set, and value the new value to be set. Possible choices for param, as defined in malloc.h, are:
Code is optimized for Intel(R) processors with support for AVX2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.
This option determines whether the performance headers directory is added to the include path search list. The performance headers directory is added if you specify [Q]use-intel-optimized-headers. Appropriate libraries are also linked in, as needed, for proper functionality.
Enables more aggressive unrolling heuristics
Tells the compiler to substitute a call to _intel_fast_calloc() for a call to calloc().
Directs the compiler to inline calloc() calls as malloc()/memset()
The compiler adds setup code in the C/C++/Fortran main function to enable optimal malloc algorithms:
The two parameters, M_MMAP_MAX and M_TRIM_THRESHOLD, are described below
Function: int mallopt (int param, int value) When calling mallopt, the param argument specifies the parameter to be set, and value the new value to be set. Possible choices for param, as defined in malloc.h, are:
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
MicroQuill SmartHeap Library (32-bit) available from http://www.microquill.com/
This allows alloca to be set to the compiler's preferred alloca by SPEC rules.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
Enables optimizations for speed and disables some optimizations that increase code size and affect speed.
To limit code size, this option:
The O1 option may improve performance for applications with very large code size, many branches, and execution time not dominated by code within loops.
-O1 sets the following options:Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
-fno-builtin disables inline expansion for all intrinsic functions.
This option trades off floating-point precision for speed by removing the restriction to conform to the IEEE standard.
EBP is used as a general-purpose register in optimizations.
Places each function in its own COMDAT section.
Flushes denormal results to zero.
OS Tuning
Drive Write Cache
The Drive Write Cache is an option that can be enabled or disabled in the HP Array Configuration Utility, CLI version. The default value for the Drive Write Cache is set to Disabled, and in order to change this the HP Array Configuration Utility, CLI version needs to be installed. When the Drive Write Cache option is enabled on a HP Smart Array Controller in a system, it can allow the HP Smart Array Controller to help make drive writes more efficient.
Accelerator Ratio
The Accelerator Ratio is an option that can be set to different percentages (in 25% increments) in the HP Array Configuration Utility, CLI version. The default value for the Accelerator Ratio is set to 0% Read and 100% Write. In order to change this the HP Array Configuration Utility, CLI version needs to be installed. Changing the Accelerator Ratio allows the array installed on the HP Smart Array Controller to adjust how the priority of reads and writes.
ulimit -s [n | unlimited] (Linux)
Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.
vm.max_map_count-n (Linux)
The maximum number of memory map areas a process may have. Memory map areas are used as a side-effect of calling malloc, directly by mmap and mprotect, and also when loading shared libraries.
Zone Reclaim:
Zone reclaim allows the reclaiming of pages from a zone if the number of free pages falls below a watermark even if other zones still have enough pages available. Reclaiming a page can be more beneficial than taking the performance penalties that are associated with allocating a page on a remote zone, especially for NUMA machines.
Disabled unused Linux services via stop_services.sh script.
The following unused Linux services were disabled before the run in simple shell scirpt via the command "service {name} stop": abrt-ccpp, abrt-oops, abrtd, acpid, atd, auditd, autofs, avahi-daemon, cgconfig, cpuspeed, crond, cups, haldaemon, irqbalance, kdump, libvirt-guests, mcelogd, mdmonitor, messagebus, portreserve, postfix, rhnsd, rhsmcertd, rpcbind, rpcgssd, rpcidmapd, certmonger, lvm2-monitor, netfs, and sysstat.
Firmware Settings
One or more of the following settings may have been set. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
Intel Hyperthreading Options (Default = Enabled):
This feature allows enabling/disabling of logical processor cores on processors supporting Intel's Hyperthreading Technology. When enabled, each physical processor core operates as two logical processor cores. When disabled, each physical core operates as only one logical processor core. Enabling this option can improve overall performance for applications that benefit from a higher processor core count.
HP Power Profile (Default = Balanced Power and Performance):
Values for this BIOS setting can be:
HP Power Regulator (Default = HP Dynamic Power Savings Mode)
This option can only be configured if the HP Power Profile is set to Custom. Values for this BIOS setting can be:
Minimum Processor Idle Power Core C-State (Default = C6 State):
This option can only be configured if the HP Power Profile is set to Custom. This feature selects the processor's lowest idle core power state (C-state) that the operating system uses. The higher the C-state, the lower the power usage of that idle state (C6 is the lowest power idle state supported by the processor). Values for this setting can be:
Minimum Processor Idle Power Package C-State (Default = Package C6(retention) State):
This option can only be configured if the HP Power Profile is set to Custom. This feature selects the processor's lowest idle package power state (C-state) that is enabled. The processor will automatically transition into the package C-states based on the Core C-states, in which cores on the processor have transitioned. The higher the package C-state, the lower the power usage of that idle package state (Package C6(retention) is the lowed power idle package state supported by the processor). Values for this setting can be:
Energy/Performance Bias (Default = Balanced Performance):
This option can only be configured if the HP Power Profile is set to Custom. This option configures several processor subsystems to optimize the processor's performance and power usage. Values for this BIOS setting can be:
Collaborative Power Control (Default = Enabled):
This BIOS option allows the enabling/disabling of the Processor Clocking Control (PCC) Interface, for operating systems which support this feature. Enabling this option allows the Operating System to request processor frequency changes even when the server has the Power Regulator option configured for Dynamic Power Savings Mode.
For Operating Systems that do not support the PCC Interface or when the Power Regulator Mode is not configured for Dynamic Power Savings Mode, his option has no impact on system operation.
QPI Snoop Configuration (Default = Home Snoop):
This option allows the user to choose the snoop mode used by the processor and QPI (Quick Path Interconnect) bus. Snooping is a process where the individual caches monitor address lines for accesses to memory locations that have cached. Changing this option can have an impact on memory performance. The performance of various workloads will vary depending on the mode selected and the order in which they are listed here does not reflect any technical ordering or ranking. The order seen here reflects the order as currently seen in the BIOS. Values for this setting can be:
NUMA Group Size Optimization (Default = Clustered):
This feature allows the user to configure how the BIOS reports the size of a NUMA node (number of logical processors), which assists the Operating System in grouping processors for application use (referred to as Kgroups). Values for this BIOS option can be:
Thermal Configuration (Default = Optimal Cooling):
This feature allows the user to select the fan cooling solution for the system. Values for this BIOS option can be:
Processor Power and Utilization Monitoring (Default = Enabled):
This BIOS option allows the enabling/disabling of iLo Processor State Mode Switching and Insight Power Management Processor Utilization Monitoring.
When set to disabled, the system will also set the HP Power Regulator mode to HP Static High Performance mode and the HP Power Profile mode to Custom. This option may be useful in some environments that require absolute minimum latency.
Memory Patrol Scrubbing (Default = Enabled):
This BIOS option allows the enabling/disabling of Memory Periodic Patrol Scrubber. The Memory Periodic Patrol Scrubber corrects memory soft errors so that, over the length of the system runtime, the risk of producing multi-bit and uncorrectable errors is reduced.
Memory Refresh Rate (Default = 2x Refresh):
This BIOS option controls the refresh rate of the memory controller and may affect the performance and resiliency of the servers memory.
When set to 1x Refresh, the memory refresh rate will be decreased, the HP Power Regulator mode will be set to HP Static High Performance mode, and the HP Power Profile mode to Custom. This option may be useful in some environments that require absolute minimum latency.
When set to 3x Refresh, the memory refresh rate will be increased, the HP Power Regulator mode will be set to HP Static High Performance mode, and the HP Power Profile mode to Custom.
Last updated October 17th, 2014.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2017 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.2.
Report generated on Wed Sep 20 11:01:38 2017 by SPEC CPU2006 flags formatter v6906.