CPU2006 Flag Description
Huawei Huawei XH622 V3 (Intel Xeon E5-2690 v3)

Copyright © 2006 Intel Corporation. All Rights Reserved.


Base Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Peak Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Base Portability Flags

410.bwaves

416.gamess

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

444.namd

447.dealII

450.soplex

453.povray

454.calculix

459.GemsFDTD

465.tonto

470.lbm

481.wrf

482.sphinx3


Peak Portability Flags

410.bwaves

416.gamess

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

444.namd

447.dealII

450.soplex

453.povray

454.calculix

459.GemsFDTD

465.tonto

470.lbm

481.wrf

482.sphinx3


Base Optimization Flags

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Peak Optimization Flags

C benchmarks

433.milc

470.lbm

482.sphinx3

C++ benchmarks

444.namd

447.dealII

450.soplex

453.povray

Fortran benchmarks

410.bwaves

416.gamess

434.zeusmp

437.leslie3d

459.GemsFDTD

465.tonto

Benchmarks using both Fortran and C

435.gromacs

436.cactusADM

454.calculix

481.wrf


Implicitly Included Flags

This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.


Commands and Options Used to Submit Benchmark Runs

submit= MYMASK=`printf '0x%x' $((1<<$SPECCOPYNUM))`; /usr/bin/taskset $MYMASK $command
When running multiple copies of benchmarks, the SPEC config file feature submit is used to cause individual jobs to be bound to specific processors. This specific submit command, using taskset, is used for Linux64 systems without numactl.
Here is a brief guide to understanding the specific command which will be found in the config file:
submit= numactl --localalloc --physcpubind=$SPECCOPYNUM $command
When running multiple copies of benchmarks, the SPEC config file feature submit is used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux64 systems with support for numactl.
Here is a brief guide to understanding the specific command which will be found in the config file:

Shell, Environment, and Other Software Settings

numactl --interleave=all "runspec command"
Launching a process with numactl --interleave=all sets the memory interleave policy so that memory will be allocated using round robin on nodes. When memory cannot be allocated on the current interleave target fall back to other nodes.
KMP_STACKSIZE
Specify stack size to be allocated for each thread.
KMP_AFFINITY
Syntax: KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]
The value for the environment variable KMP_AFFINITY affects how the threads from an auto-parallelized program are scheduled across processors.
It applies to binaries built with -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows).
modifier:
    granularity=fine Causes each OpenMP thread to be bound to a single thread context.
type:
    compact Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as possible to the thread context where the <n> OpenMP thread was placed.
    scatter Specifying scatter distributes the threads as evenly as possible across the entire system.
permute: The permute specifier is an integer value controls which levels are most significant when sorting the machine topology map. A value for permute forces the mappings to make the specified number of most significant levels of the sort the least significant, and it inverts the order of significance.
offset: The offset specifier indicates the starting position for thread assignment.

Please see the Thread Affinity Interface article in the Intel Composer XE Documentation for more details.

Example: KMP_AFFINITY=granularity=fine,scatter
Specifying granularity=fine selects the finest granularity level and causes each OpenMP or auto-par thread to be bound to a single thread context.
This ensures that there is only one thread per core on cores supporting HyperThreading Technology
Specifying scatter distributes the threads as evenly as possible across the entire system.
Hence a combination of these two options, will spread the threads evenly across sockets, with one thread per physical core.

Example: KMP_AFFINITY=compact,1,0
Specifying compact will assign the n+1 thread to a free thread context as close as possible to thread n.
A default granularity=core is implied if no granularity is explicitly specified.
Specifying 1,0 sets permute and offset values of the thread assignment.
With a permute value of 1, thread n+1 is assigned to a consecutive core. With an offset of 0, the process's first thread 0 will be assigned to thread 0.
The same behavior is exhibited in a multisocket system.
OMP_NUM_THREADS
Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8
Set stack size to unlimited
The command "ulimit -s unlimited" is used to set the stack size limit to unlimited.
Free the file system page cache
The command "echo 1> /proc/sys/vm/drop_caches" is used to free up the filesystem page cache.

Red Hat Specific features

Transparent Huge Pages
On RedHat EL 6 and later, Transparent Hugepages increase the memory page size from 4 kilobytes to 2 megabytes. Transparent Hugepages provide significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead.
Hugepages are used by default unless the /sys/kernel/mm/redhat_transparent_hugepage/enabled field is changed from its RedHat EL6 default of 'always'.

Operating System Tuning Parameters

Install only the relevant files

Select only test related files when installing the operating system,So that many services are not installed, this will reduce the consumption of resources by the operating system itself. In accordance with the following methods to install the operating system: 1.The software installation mode was selected 'Customize now'. 2.Next,In 'base System' column, We choose the following installation package,'Base','Compatibility Libraries', 'Java Platform','Large Systems Performance','Performance Tools','Perl Support'.In 'Development' column, We choose the following installation package,'Development tools'.That is all the installation package.

HUGETLB_MORECORE

Set this environment variable to "yes" to enable applications to use large pages.

LD_PRELOAD=/usr/lib64/libhugetlbfs.so

Setting this environment variable is necessary to enable applications to use large pages.


Firmware / BIOS / Microcode Settings

Hardware Prefetch:

This BIOS option allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern-recognition algorithm In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.

Adjacent Sector Prefetch:

This BIOS option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within a 128-byte sector that contains the data needed due to a cache line miss. In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.

Intel Turbo boost Technology:

Enabling this option allows the processor cores to automatically increase its frequency and increasing performance if it is running below power, temperature.

Intel Hyper Threading Technology:

Enabling this option allows to use processor resources more efficiently, enabling multiple threads to run on each core and increases processor throughput, improving overall performance on threaded software.

Power Efficiency Mode (Default=Custom)

Values for this BIOS setting can be: Efficiency: Maximize the power efficiency of the server,Performance:Maximize the performance of the server, Custom:Allows the user to customize power and performance related options individually.

Lockstep Memory Mode (Default=Enabled)

Values for this BIOS setting can be: Lockstep memory mode uses two memory channels at a time and provides an even higher level of protection.You can adjust the mode to disabled.

cooling Configuration

The Baseboard Management Controller allows the user to adjust the fan speed manually,If the server is in a stressful environment, the CPU have high temperature, you can adjust the fan speed to 100%.

Memory Power Saving

Selects the memory power saving mode, Depends on the selected mode, the Power Down clock mode, CKE, and IBT are intialized accordingly, disable this featrue will keep memory in high performance mode.

C-State

Core C3, Core C6 can be disabled for latency-sensitive applications in order to minimize latency, but disable Core C-states can also significantly limit the amount of turbo when a low number of cores are active, C3 and C6 are recommended to enable in SPEC CPU benchmark.

QPI Snoop Configuration:

There are 3 snoop mode options for how to maintain cache coherency across the Intel QPI fabric, each with varying memory latency and bandwidth characteristics depending on how the snoop traffic is generated.

Cluster on Die (COD) mode logically splits a socket into 2 NUMA domains that are exposed to the OS with half the amount of cores and LLC assigned to each NUMA domain in a socket. This mode utilizes an on-die directory cache and in memory directory bits to determine whether a snoop needs to be sent. Use this mode for highly NUMA optimized workloads to get the lowest local memory latency and highest local memory bandwidth for NUMA workloads.

In Home Snoop and Early Snoop modes, snoops are always sent , they just originate from different places: the caching agent (earlier) in Early Snoop mode and the home agent (later) in Home Snoop mode.

VT Support

If virtualization is not used, this option should be set to "Disabled", this can result in slight performance liftings and energy savings

Memory Patrol Scrub

This BIOS option allows the enabling/disabling of Memory Periodic Patrol Scrubber. The Memory Periodic Patrol Scrubber corrects memory soft errors so that, over the length of the system runtime, the risk of producing multi-bit and uncorrectable errors is reduced.


Flag description origin markings:

[user] Indicates that the flag description came from the user flags file.
[suite] Indicates that the flag description came from the suite-wide flags file.
[benchmark] Indicates that the flag description came from a per-benchmark flags file.

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2006/flags/Intel-ic15.0-official-linux64.html,
http://www.spec.org/cpu2006/flags/Huawei-Platform-Settings-HASWELL-V1.4.html.

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2006/flags/Intel-ic15.0-official-linux64.xml,
http://www.spec.org/cpu2006/flags/Huawei-Platform-Settings-HASWELL-V1.4.xml.


For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2015 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.2.
Report generated on Tue Mar 10 16:01:46 2015 by SPEC CPU2006 flags formatter v6906.