Compilers: Oracle Solaris Studio 12.3
Operating systems: Solaris 11
Last updated: 29-Mar-2012 gr
The text for many of the descriptions below was taken from the Oracle Studio Compiler Documentation, which is copyright © 2007-2012 Oracle Corporation, Inc. The original documentation can be found at docs.sun.com.
This document has both optimization flags (in the immediately following section) and a description of Platform Settings
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C++ Compiler
This macro indicates that the benchmark is being compiled on an x64/Solaris system.
This macro specifies that the target system uses the LP64 data model; specifically, that integers are 32 bits, while longs and pointers are 64 bits.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
SPEC_CPU_SOLARIS is used so that SUN submitters don't have to bother specifying SPEC_CPU_HAVE_BOOL. It sets HAVE__BOOL, and also includes alloca.h.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Enables portability changes for Solaris
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This flag can be set for SPEC compilation for Solaris using default compiler.
This macro indicates that the benchmark is being compiled on an x64/Solaris system.
This macro specifies that the target system uses the LP64 data model; specifically, that integers are 32 bits, while longs and pointers are 64 bits.
SPEC_CPU_SOLARIS is used so that SUN submitters don't have to bother specifying SPEC_CPU_HAVE_BOOL. It sets HAVE__BOOL, and also includes alloca.h.
Enables portability changes for Solaris
This flag can be set for SPEC compilation for Solaris using default compiler.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Generate binaries assuming the associated process is restricted to the lower 32bit address space
Set the preferred page size for running the program.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m32 to create 32-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis:
Use STLport's Standard Library implementation instead of the default libCstd.
This library provides faster versions of some common functions, such as malloc/free and bcopy.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Links in a library of general purpose memory allocation routines which can be faster than those found in libc, at the expense of more virtual memory consumed.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m32 to create 32-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Enables inlining of calloc. Note: this is a temporary spelling of a switch, used only during pre-release testing of the compiler. Upon release, the functions enabled by this switch will be included within -Abuiltin_opt:assume_standard_func=on
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m32 to create 32-bit executables and shared libraries. The default is 32-bit.
Set the preferred heap page size for running the program.
Set the preferred stack page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Structure Array Contraction reduces strides in a hot loop accessing a big array. This is done by collecting only the hot fields into a new structure and rearranging the dimensions in the new array (of the new structure) to minimize stride width, e.g. a[x][y] to a[y][x]
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Treat pointer-valued function parameters as restricted pointers.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m32 to create 32-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m32 to create 32-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis:
Use STLport's Standard Library implementation instead of the default libCstd.
Link with MicroQuill's SmartHeap library for Solaris. This is a library that optimizes calls to new, delete, malloc and free.
The -R flag specifies library search directories to the runtime linker. The information is recorded in the object file and passed to the runtime linker.
The version of SmartHeap that is used can be one of:
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis:
Treat pointer-valued function parameters as restricted pointers.
Use STLport's Standard Library implementation instead of the default libCstd.
This library provides faster versions of some common functions, such as malloc/free and bcopy.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m32 to create 32-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Use STLport's Standard Library implementation instead of the default libCstd.
This library provides faster versions of some common functions, such as malloc/free and bcopy.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Allows the compiler to assume that your code does not rely on setting of the errno variable.
Selects faster (but nonstandard) handling of floating point arithmetic exceptions and gradual underflow. The spelling "-fns=yes" is equivalent to "-fns".
Controls simplifying assumptions for floating point arithmetic:
Evaluate float expressions as single precision.
Turns off all IEEE 754 trapping modes.
Cancels forcing expressions to have the precision of the result.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Substitute intrinsic functions or inline system functions where profitable for performance.
Analyze loops for inter-iteration data dependencies, and do loop restructuring.
Use inline expansion for math library, libm.
Select the optimized math library.
Specify optimization level. Can be written either as -xOn or -On, where n indicates:
Allow the compiler to use the frame-pointer register (%ebp on IA32, %rbp on x64) as an unallocated callee-saves register.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
submit=echo 'pbind -b...' > dobmk; sh dobmk
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to
cause individual jobs to be bound to specific processors. If so, the specific command may be found in the config file; here
is a brief guide to understanding that command:
This result has been formatted using multiple flags files. The "sw environment" from each of them appears next.
One or more of the following settings may have been applied to the testbed. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
autoup=<n>
When the file system flush daemon fsflush runs, it writes to disk all modified file buffers that are more
than n seconds old.
lpg_alloc_prefer=<n>
0 = the OS may allocate remote pages if the size requested is readily available in a remote locality group (default)
1 = Set lgroup page allocation to strongly prefer local pages.
maxusers=<n>
To increase the number of user processes derived by the system
ncsize=<n>
Defines the number of entries in the directory name look-up cache (DNLC). This parameter is used by UFS, NFS, and
ZFS to cache elements of path names that have been resolved.
rlim_fd_cur=<n>
Defines the soft limit on file descriptors that a single process can have open.
tune_t_fsflushr=<n>
Controls the number of seconds between runs of the file system flush daemon, fsflush.
zfs:zfs_arc_min=<n>
Controls the minimum amount of memory used in bytes by ZFS for caching of file system buffers.
zfs:zfs_arc_max=<n>
Controls the maximum amount of memory used in bytes by ZFS for caching of file system buffers.
ZFS RAIDZ
In mirrored storage pool configuration, ZFS provides a RAID-Z configuration with either single or double parity fault tolerance. Single-parity RAID-Z is similar to RAID-5. Double-parity RAID-Z is similar to RAID-6.
OMP_DYNAMIC=<TRUE|FALSE>
Enables (TRUE) or disables (FALSE) dynamic adjustment of the number of threads available for execution of parallel
regions. The default is TRUE.
MTEXCLUSIVE=Y
By default, libmtmalloc allocates 2*NCPUS buckets from which allocations occur. Threads share buckets based on their thread ID. If MTEXCLUSIVE is invoked, then 4*NCPUS buckets are used. Threads with thread id less than 2*NCPUS receive an exclusive bucket and thus do not need to use locks. Allocation perfor- mance for these buckets may be dramatically increased. One enabled MTEXCLUSIVE can not be dis- abled. This feature can be enabled by setting the MTMALLOC_OPTION MTEXCLUSIVE to "Y" or "y" or any- thing beginning with "y". Alternatively it can be enabled by a call to mallocctl(3MALLOC).
OMP_NESTED=<TRUE|FALSE>
Enables or disables nested parallelism. Value is either TRUE or FALSE. The default is FALSE.
OMP_NUM_THREADS=<n>
If programs have been compiled with -xautopar, this environment variable can be set to the number of
processors that programs should use.
PARALLEL=<n>
If programs have been compiled with -xautopar, this environment variable can be set to the number of
processors that programs should use.
STACKSIZE=<n>
Set the size of the stack (temporary storage area) for each slave thread of a multithreaded program.
SUNW_MP_PROCBIND=<n>
This environment variable can be used to bind the LWPs (lightweight processes) managed by the microtasking library,
libmtsk, to processors. Performance can be enhanced with processor binding, but performance degradation will occur if
multiple LWPs are bound to the same processor.
The value for SUNW_MP_PROCBIND can be:
Integers in the above denote the "logical" processor IDs to which the LWPs are to be bound. Logical processor IDs are
consecutive integers that start with 0, and may or may not be identical to the actual processsor IDs. If n processors are
available online, then their logical processor IDs are 0, 1, ..., n-1.
By default, LWPs are not bound to processors. It is left up to the operating system, Solaris, to schedule LWPs onto processors.
If the value "TRUE" is used, the operating system will bind processes to processors, starting with processor 0.
If the value "SCATTER" is used, then the threads will be bound to virtual processors that are far apart.
SUNW_MP_THR_IDLE=SPIN
Controls the end-of-task status of each helper thread executing the parallel part of a program. You can set the value
to spin, sleep ns, or sleep nms. The default is SPIN -- the thread spins (or busy-waits) after completing a parallel task
until a new parallel task arrives. You can set the value to be one of the following: SLEEP( times), SLEEP(timems), SLEEP( timemc),
where time is an integer that specifies an amount of time, and s, ms, and mc specify the time unit (seconds, milli-seconds,
and micro-seconds, respectively).
ulimit -s <n>
Sets the stack size to n kbytes, or "unlimited" to allow the stack size to grow without limit.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.2.
Report generated on Thu Jul 24 16:04:30 2014 by SPEC CPU2006 flags formatter v6906.