Compilers |
Oracle Solaris Studio 12.3
|
---|---|
Operating systems: | Solaris 10 and 11 |
Copyright: |
The text for many of the descriptions below was excerpted from the Solaris Studio Compiler Documentation, which is copyright © 2013 Oracle Corporation. The original documentation can be found at http://www.oracle.com/technetwork/indexes/documentation/. |
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio Fortran 90 Compiler
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio Fortran 90 Compiler
Invoke the Oracle Solaris Studio Fortran 90 Compiler
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio Fortran 90 Compiler
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Generate indirect prefetches for data arrays accessed indirectly.
Links in a linker mapfile that aligns text, data, and bss on 64 KB boundaries.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Allows the compiler to perform type-based alias analysis:
Use the Apache stdcxx version 4 library that is installed as part of Oracle Solaris, instead of the default libCstd.
Links in a linker mapfile that aligns text, data, and bss on 64 KB boundaries.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Links in a linker mapfile that aligns text, data, and bss on 64 KB boundaries.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Generate indirect prefetches for data arrays accessed indirectly.
Links in a linker mapfile that aligns text, data, and bss on 64 KB boundaries.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Generate indirect prefetches for data arrays accessed indirectly.
Adjust the compiler's assumptions about prefetch latency by the specified factor. Typically values in the range of 0.5 to 2.0 will be useful. A lower number might indicate that data will usually be cache resident; a higher number might indicate a relatively larger gap between the processor speed and the memory speed (compared to the assumptions built into the compiler).
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Generate indirect prefetches for data arrays accessed indirectly.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Links in a linker mapfile that aligns text, data, and bss on 256 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Adjust the compiler's assumptions about prefetch latency by the specified factor. Typically values in the range of 0.5 to 2.0 will be useful. A lower number might indicate that data will usually be cache resident; a higher number might indicate a relatively larger gap between the processor speed and the memory speed (compared to the assumptions built into the compiler).
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Turn off inlining.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Treat pointer-valued function parameters as restricted pointers.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Controls simplifying assumptions for floating point arithmetic:
This library provides faster versions of some common functions, such as malloc/free and bcopy.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Allows the compiler to perform type-based alias analysis:
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Control generation of prefetch instructions.
(Explicit prefetch macros are not used in the source code of the SPEC CPU2006 benchmarks; therefore, in the context of CPU2006, -xprefetch=yes is effectively a synonym for -xprefetch=auto.)
Analyze loops for inter-iteration data dependencies, and do loop restructuring. Loop restructuring includes loop interchange, loop fusion, scalar replacement, and elimination of "dead" array assignments.
Use the Apache stdcxx version 4 library that is installed as part of Oracle Solaris, instead of the default libCstd.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Allows the compiler to perform type-based alias analysis:
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Treat pointer-valued function parameters as restricted pointers.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Use the Apache stdcxx version 4 library that is installed as part of Oracle Solaris, instead of the default libCstd.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Generate indirect prefetches for data arrays accessed indirectly.
Allows the compiler to perform type-based alias analysis:
Treat pointer-valued function parameters as restricted pointers.
Use STLport's Standard Library implementation instead of the default libCstd.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Allows the compiler to perform type-based alias analysis:
Links in a linker mapfile that aligns text, data, and bss on 256 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Use the Apache stdcxx version 4 library that is installed as part of Oracle Solaris, instead of the default libCstd.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 256 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Set the preferred page size for running the program.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Control generation of prefetch instructions.
(Explicit prefetch macros are not used in the source code of the SPEC CPU2006 benchmarks; therefore, in the context of CPU2006, -xprefetch=yes is effectively a synonym for -xprefetch=auto.)
Set the preferred page size for running the program.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allocate routine local variables on the stack.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Links in a library of general purpose memory allocation routines which can be faster than those found in libc, at the expense of more virtual memory consumed.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Generate indirect prefetches for data arrays accessed indirectly.
Links in a linker mapfile that aligns text, data, and bss on 4 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Oracle Solaris Studio C and Oracle Solaris Studio C++ is 1. The default for Oracle Solaris Studio Fortran is 2.
Adjust the compiler's assumptions about prefetch latency by the specified factor. Typically values in the range of 0.5 to 2.0 will be useful. A lower number might indicate that data will usually be cache resident; a higher number might indicate a relatively larger gap between the processor speed and the memory speed (compared to the assumptions built into the compiler).
Set the preferred page size for running the program.
Includes symbols in the executable. If the optimization level is -xO3 or lower, some optimizations may be disabled when -g is present. At -xO4 or higher, full optimization is performed, even when -g is present.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Enables the use of the fused multiply-add instruction.
[code generator flag]
Do function entry alignment at n-byte boundaries.
Links in a linker mapfile that aligns text, data, and bss on 256 MB boundaries.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Prefer optimization for high throughput situations where memory is already heavily loaded, and the number of prefetches should therefore not be excessive.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
Turns on verbose mode, showing how command options expand. Shows each component as it is invoked.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Controls compiler verbosity. There are several values that can be used with this flag:
The default is -verbose=%none.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
This flag will cause the Oracle Solaris Studio Fortran compiler to emit verbose messages.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
Turns on verbose mode, showing how command options expand. Shows each component as it is invoked.
This flag will cause the Oracle Solaris Studio Fortran compiler to emit verbose messages.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
Turns on verbose mode, showing how command options expand. Shows each component as it is invoked.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Controls compiler verbosity. There are several values that can be used with this flag:
The default is -verbose=%none.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
This flag will cause the Oracle Solaris Studio Fortran compiler to emit verbose messages.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
Turns on verbose mode, showing how command options expand. Shows each component as it is invoked.
This flag will cause the Oracle Solaris Studio Fortran compiler to emit verbose messages.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Allows the compiler to assume that your code does not rely on setting of the errno variable.
Sets the maximum assumed data alignment:
Selects faster (but nonstandard) handling of floating point arithmetic exceptions and gradual underflow.
Controls simplifying assumptions for floating point arithmetic:
Evaluate float expressions as single precision.
Turns off all IEEE 754 trapping modes.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Substitute intrinsic functions or inline system functions where profitable for performance.
Analyze loops for inter-iteration data dependencies, and do loop restructuring. Loop restructuring includes loop interchange, loop fusion, scalar replacement, and elimination of "dead" array assignments.
Use inline expansion for math library, libm.
Select the optimized math library.
Specify optimization level n:
Selects options for architecture, chip timing, and cache sizes. These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively. A wide variety of targets can be selected, including ultra3, ultra3cu, ultra3i, ultra3iplus, ultra4, ultra4plus, ultraT1, ultraT2, sparc64vi. In each case, appropriate options are selected for architecture, chip timing, and cache size to match that target.
If -xtarget=native is selected, options that are appropriate for the system where the compile is being done.
The default is -xtarget=generic, which sets the parameters for the best performance over most 32-bit platform architectures.
On Solaris SPARC systems, the default pointer size with -xtarget=native is 32-bit.
Specifies which instructions can be used. Among the choices are:
xcache defines the cache properties for use by the optimizer. It can specify use of default assumptions ("generic"); use of whatever the compiler can assume about the current platform ("native"); or an explicit description of up to three levels of cache, using colon-separated specifiers of the form si/li/ai, where:
xchip determines timing properties that are assumed by the compiler. It does not limit which instructions are allowed (see xtarget for that). Among the choices are:
Assume data is naturally aligned.
Sets the IEEE 754 trapping mode to common exceptions (invalid, division by zero, and overflow).
Pad local variables, for better use of cache.
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying -xvector is equivalent to -xvector=lib.
submit=echo 'pbind -b...' > dobmk; sh dobmk (SPEC tools, Unix shell)
When running multiple copies of benchmarks, the SPEC config file feature submit is often used to
cause individual jobs to be bound to specific processors. If so, the specific command may be found in the config file; here
is a brief guide to understanding that command:
This result has been formatted using multiple flags files. The "sw environment" from each of them appears next.
MTEXCLUSIVE
If set to "Y", additional memory allocation buckets will be created, so that threads will not need to share buckets
unless more than 2*NCPUS threads are created. This variable is used by mtmalloc.
OMP_NUM_THREADS
Sets the number of threads to use in OpenMP parallel regions.
SUNW_MP_PROCBIND
Binds threads in an OpenMP program to the virtual processors enumerated in the assignment. Can also be set to TRUE,
which casues threads to be bound in a round-robin fashion.
SUNW_MP_THR_IDLE
Specifies whether idle threads should SLEEP or SPIN.
STACKSIZE=<n>
Set the size of the stack (temporary storage area) for each slave thread of a multithreaded program.
ulimit -s <n>
Sets the stack size to n kbytes, or "unlimited" to allow the stack size to grow without limit.
Note that the "heap" and the "stack" share space; if your application allocates large amounts of memory on the heap,
then you may find that the stack limit should not be set to "unlimited". A commonly used setting for SPEC CPU2006 purposes
is a stack size of 128MB (131072K).
LD_LIBRARY_PATH=<directories>
LD_LIBRARY_PATH controls the search order for both the compile-time and run-time linkers. Usually, it can be
defaulted; but testers may sometimes choose to explicitly set it (as documented in the notes in the submission), in order to
ensure that the correct versions of libraries are picked up.
MADV=access_lwp and LD_PRELOAD=madv.so.1
When the madv.so.1 shared object is present in the LD_PRELOAD list, it is possible to provide advice to the system
about how memory is likely to be accessed. The advice present in MADV applies to all processes and their descendants. A
commonly used value is access_lwp, which means that when memory is allocated, the next process to touch it will be
the primary user. Examples of other possible values include sequential, for memory that is used only once and
then no longer needed and acces_many when many processes will be sharing data.
MPSSHEAP=<size>, MPSSSTACK=<size>, and
LD_PRELOAD=mpss.so.1
When these variables are set, the mpss.so.1 shared object will set the preferred page size for new processes, and their
descendants, to the requested sizes for the heap and stack.
Platform settings
One or more of the following settings may have been applied to the testbed. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
autoup=<n> (Unix /etc/system)
When the file system flush daemon fsflush runs, it writes to disk all modified file buffers that are more
than n seconds old.
bufhwm=<n> (Unix /etc/system)
Sets the upper limit of the file system buffer cache. The units for bufhwm are in kilobytes.
cpu_bringup_set=<n> (Unix /etc/system)
Specifies which processors are enabled at boot time. <n> represents a bitmap of the
processors to be brought online.
segmap_percent=<n> (Unix /etc/system)
This value controls the size of the segmap cache as a percent of total memory. Set this value to help keep the file system cache from consuming memory unnecessarily.
STACKSIZE=<n> (Unix environment variable)
Set the size of the stack (temporary storage area) for each slave thread of a multithreaded program.
psrset -c <n> (Unix, superuser commands)
Creates a new processor set and displays the new processor set ID.
psrset -e <n> (Unix, superuser commands)
Executes a command (with optional arguments) in the specified processor set.
The command process and any child processes are executed only by processors in the processor set.
svcadm disable webconsole (Unix, superuser commands)
Turns off the Sun Web Console, a browser-based interface that performs systems management.
If it is enabled, system administrators can manage systems, devices and services from remote systems.
ts_dispatch_extended=<n> (Unix /etc/system)
Controls which dispatch table is loaded upon boot. A value of 1 loads the large system table, a value of 0 loads the regular system table.
tune_t_fsflushr=<n> (Unix /etc/system)
Controls the number of seconds between runs of the file system flush daemon, fsflush.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.2.
Report generated on Thu Jul 24 15:41:18 2014 by SPEC CPU2006 flags formatter v6906.