Compilers: Oracle Solaris Studio 12.3, 1/13 Platform Specific Enhancement
Operating systems: Solaris 11
Last updated: 29-Jan-2013 gr
The text for many of the descriptions below was taken from the Oracle Studio Compiler Documentation, which is copyright © 2007-2013 Oracle Corporation, Inc. The original documentation can be found at docs.sun.com.
This document has both optimization flags (in the immediately following section) and a description of Platform Settings
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio Fortran 90 Compiler
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio Fortran 90 Compiler
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform link-time optimizations, such as branch optimization and cache coloring.
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Fortran is 2. The default for C and C++ is 1.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Links in a library of general purpose memory allocation routines which can be faster than those found in libc, at the expense of more virtual memory consumed.
Reads mapfile as a text file of directives to ld.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform link-time optimizations, such as branch optimization and cache coloring.
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Allows the compiler to perform type-based alias analysis:
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Fortran is 2. The default for C and C++ is 1.
Disables use of the compiler-provided Cstd header files and the STLport's Standard Library implementation.
Adds the directory for the Apache C++ Standard Library include files to the search path at compile time.
Adds the directory for the Apache C++ Standard Library include files to the search path at compile time.
Adds the directory for the Apache C++ Standard Library to the search path at link time
Specifies library search directory for the Apache C++ Standard Library for use by the runtime linker. The information is recorded in the object file and passed to the runtime linker.
Link with the Apache C++ Standard Library ("stdcxx"). The conventions for naming libraries are described in the README that comes with stdcxx; for example, "std8D" indicates a 64-bit shared library with optimization enabled; "std8d" is a 32-bit shared library with optimization enabled.
Reads mapfile as a text file of directives to ld.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform link-time optimizations, such as branch optimization and cache coloring.
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Generate indirect prefetches for data arrays accessed indirectly.
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Fortran is 2. The default for C and C++ is 1.
Reads mapfile as a text file of directives to ld.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform link-time optimizations, such as branch optimization and cache coloring.
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Fortran is 2. The default for C and C++ is 1.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Generate indirect prefetches for data arrays accessed indirectly.
Reads mapfile as a text file of directives to ld.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Controls simplifying assumptions for floating point arithmetic:
Inliner only considers routines smaller than n pseudo instructions as possible inline candidates.
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Reads mapfile as a text file of directives to ld.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Perform link-time optimizations, such as branch optimization and cache coloring.
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Allows the compiler to perform type-based alias analysis at the specified alias level:
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Inliner only considers routines smaller than n pseudo instructions as possible inline candidates.
Control the optimizer's loop inliner; Set inline callee size limit to n. The unit roughly corresponds to the number of instructions.
Control the optimizer's loop inliner; The inliner is allowed to increase the size of the program by up to n%.
Links in a library of general purpose memory allocation routines which can be faster than those found in libc, at the expense of more virtual memory consumed.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis:
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Specifies that all loops can be pipelined without needing to be concerned about loop-carried dependencies.
xchip determines timing properties that are assumed by the compiler. It does not limit which instructions are allowed (see xtarget for that). Among the choices are:
Use STLport's Standard Library implementation instead of the default libCstd.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Allows the compiler to perform type-based alias analysis:
Treat pointer-valued function parameters as restricted pointers.
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Disables use of the compiler-provided Cstd header files and the STLport's Standard Library implementation.
Adds the directory for the Apache C++ Standard Library include files to the search path at compile time.
Adds the directory for the Apache C++ Standard Library include files to the search path at compile time.
Adds the directory for the Apache C++ Standard Library to the search path at link time
Specifies library search directory for the Apache C++ Standard Library for use by the runtime linker. The information is recorded in the object file and passed to the runtime linker.
Link with the Apache C++ Standard Library ("stdcxx"). The conventions for naming libraries are described in the README that comes with stdcxx; for example, "std8D" indicates a 64-bit shared library with optimization enabled; "std8d" is a 32-bit shared library with optimization enabled.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Use STLport's Standard Library implementation instead of the default libCstd.
Allows the compiler to perform type-based alias analysis:
Specify optimization level. Can be written either as -xOn or -On, where n indicates:
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Treat pointer-valued function parameters as restricted pointers.
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Links in a library of general purpose memory allocation routines which can be faster than those found in libc, at the expense of more virtual memory consumed.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Allows the compiler to perform type-based alias analysis:
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Inliner only considers routines smaller than n pseudo instructions as possible inline candidates.
Control the optimizer's loop inliner; Set inline callee size limit to n. The unit roughly corresponds to the number of instructions.
Control the optimizer's loop inliner; The inliner is allowed to increase the size of the program by up to n%.
xchip determines timing properties that are assumed by the compiler. It does not limit which instructions are allowed (see xtarget for that). Among the choices are:
Use STLport's Standard Library implementation instead of the default libCstd.
This library provides faster versions of some common functions, such as malloc/free and bcopy.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Perform link-time optimizations, such as branch optimization and cache coloring.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform link-time optimizations, such as branch optimization and cache coloring.
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Reads mapfile as a text file of directives to ld.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Specifies that all loops can be pipelined without needing to be concerned about loop-carried dependencies.
Reads mapfile as a text file of directives to ld.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specify optimization level. Can be written either as -xOn or -On, where n indicates:
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Links in a library of general purpose memory allocation routines which can be faster than those found in libc, at the expense of more virtual memory consumed.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Controls simplifying assumptions for floating point arithmetic:
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Generate indirect prefetches for data arrays accessed indirectly.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform link-time optimizations, such as branch optimization and cache coloring.
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Allows the compiler to perform type-based alias analysis at the specified alias level:
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Fortran is 2. The default for C and C++ is 1.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Generate indirect prefetches for data arrays accessed indirectly.
Reads mapfile as a text file of directives to ld.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Fortran is 2. The default for C and C++ is 1.
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Enables the use of the fused multiply-add instruction.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Disable loop unroll and jam optimization in iropt
xchip determines timing properties that are assumed by the compiler. It does not limit which instructions are allowed (see xtarget for that). Among the choices are:
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Reads mapfile as a text file of directives to ld.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Allows the compiler to assume that your code does not rely on setting of the errno variable.
Selects faster (but nonstandard) handling of floating point arithmetic exceptions and gradual underflow. The spelling "-fns=yes" is equivalent to "-fns".
Controls simplifying assumptions for floating point arithmetic:
Evaluate float expressions as single precision.
Turns off all IEEE 754 trapping modes.
Cancels forcing expressions to have the precision of the result.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Substitute intrinsic functions or inline system functions where profitable for performance.
Analyze loops for inter-iteration data dependencies, and do loop restructuring.
Use inline expansion for math library, libm.
Select the optimized math library.
Specify optimization level. Can be written either as -xOn or -On, where n indicates:
Allow the compiler to use the frame-pointer register (%ebp on IA32, %rbp on x64) as an unallocated callee-saves register.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Assume data is naturally aligned.
Sets the IEEE 754 trapping mode to common exceptions (invalid, division by zero, and overflow).
submit=echo 'pbind -b...' > dobmk; sh dobmk
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to
cause individual jobs to be bound to specific processors. If so, the specific command may be found in the config file; here
is a brief guide to understanding that command:
One or more of the following settings may have been applied to the testbed. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
autoup=<n>
When the file system flush daemon fsflush runs, it writes to disk all modified file buffers that are more
than n seconds old.
lpg_alloc_prefer=<n>
0 = the OS may allocate remote pages if the size requested is readily available in a remote locality group (default)
1 = Set lgroup page allocation to strongly prefer local pages.
maxusers=<n>
To increase the number of user processes derived by the system
ncsize=<n>
Defines the number of entries in the directory name look-up cache (DNLC). This parameter is used by UFS, NFS, and
ZFS to cache elements of path names that have been resolved.
rlim_fd_cur=<n>
Defines the soft limit on file descriptors that a single process can have open.
tune_t_fsflushr=<n>
Controls the number of seconds between runs of the file system flush daemon, fsflush.
zfs:zfs_arc_min=<n>
Controls the minimum amount of memory used in bytes by ZFS for caching of file system buffers.
zfs:zfs_arc_max=<n>
Controls the maximum amount of memory used in bytes by ZFS for caching of file system buffers.
ZFS RAIDZ
In mirrored storage pool configuration, ZFS provides a RAID-Z configuration with either single or double parity fault tolerance. Single-parity RAID-Z is similar to RAID-5. Double-parity RAID-Z is similar to RAID-6.
OMP_DYNAMIC=<TRUE|FALSE>
Enables (TRUE) or disables (FALSE) dynamic adjustment of the number of threads available for execution of parallel
regions. The default is TRUE.
MTEXCLUSIVE=Y
By default, libmtmalloc allocates 2*NCPUS buckets from which allocations occur. Threads share buckets based on their thread ID. If MTEXCLUSIVE is invoked, then 4*NCPUS buckets are used. Threads with thread id less than 2*NCPUS receive an exclusive bucket and thus do not need to use locks. Allocation perfor- mance for these buckets may be dramatically increased. One enabled MTEXCLUSIVE can not be dis- abled. This feature can be enabled by setting the MTMALLOC_OPTION MTEXCLUSIVE to "Y" or "y" or any- thing beginning with "y". Alternatively it can be enabled by a call to mallocctl(3MALLOC).
OMP_NESTED=<TRUE|FALSE>
Enables or disables nested parallelism. Value is either TRUE or FALSE. The default is FALSE.
OMP_NUM_THREADS=<n>
If programs have been compiled with -xautopar, this environment variable can be set to the number of
processors that programs should use.
PARALLEL=<n>
If programs have been compiled with -xautopar, this environment variable can be set to the number of
processors that programs should use.
STACKSIZE=<n>
Set the size of the stack (temporary storage area) for each slave thread of a multithreaded program.
SUNW_MP_PROCBIND=<n>
This environment variable can be used to bind the LWPs (lightweight processes) managed by the microtasking library,
libmtsk, to processors. Performance can be enhanced with processor binding, but performance degradation will occur if
multiple LWPs are bound to the same processor.
The value for SUNW_MP_PROCBIND can be:
Integers in the above denote the "logical" processor IDs to which the LWPs are to be bound. Logical processor IDs are
consecutive integers that start with 0, and may or may not be identical to the actual processsor IDs. If n processors are
available online, then their logical processor IDs are 0, 1, ..., n-1.
By default, LWPs are not bound to processors. It is left up to the operating system, Solaris, to schedule LWPs onto processors.
If the value "TRUE" is used, the operating system will bind processes to processors, starting with processor 0.
If the value "SCATTER" is used, then the threads will be bound to virtual processors that are far apart.
SUNW_MP_THR_IDLE=SPIN
Controls the end-of-task status of each helper thread executing the parallel part of a program. You can set the value
to spin, sleep ns, or sleep nms. The default is SPIN -- the thread spins (or busy-waits) after completing a parallel task
until a new parallel task arrives. You can set the value to be one of the following: SLEEP( times), SLEEP(timems), SLEEP( timemc),
where time is an integer that specifies an amount of time, and s, ms, and mc specify the time unit (seconds, milli-seconds,
and micro-seconds, respectively).
ulimit -s <n>
Sets the stack size to n kbytes, or "unlimited" to allow the stack size to grow without limit.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.2.
Report generated on Thu Jul 24 15:44:07 2014 by SPEC CPU2006 flags formatter v6906.