This result has been formatted using multiple flags files. The "default header section" from each of them appears next.
Compilers: Oracle Solaris Studio 12.2
Operating systems: Solaris 10 9/10
Last updated: 23-Feb-2011 gr
The text for many of the descriptions below was taken from the Oracle Studio Compiler Documentation, which is copyright © 2007-2010 Oracle Corporation, Inc. The original documentation can be found at docs.sun.com.
This document has both optimization flags (in the immediately following section) and a description of Platform Settings
Compilers: n/a
Operating systems: Linux
Last updated: 13-Sep-2010 blw
This document has a description of Platform Settings
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio Fortran 90 Compiler
Invoke the Oracle Solaris Studio C Compiler.
Invoke the Oracle Solaris Studio C++ Compiler
Invoke the Oracle Solaris Studio Fortran 90 Compiler
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that the system building the benchmark is a little-endian system.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that the system building the benchmark is a little-endian system.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Allows the compiler to perform type-based alias analysis:
Disables use of the compiler-provided Cstd header files.
Adds the directory for the Apache C++ Standard Library include files to the search path at compile time.
Adds the directory for the Apache C++ Standard Library include files to the search path at compile time.
Adds the directory for the Apache C++ Standard Library to the search path at link time
Specifies library search directory for the Apache C++ Standard Library for use by the runtime linker. The information is recorded in the object file and passed to the runtime linker.
Link with the Apache C++ Standard Library ("stdcxx"). The conventions for naming libraries are described in the README that comes with stdcxx; for example, "std8D" indicates a 64-bit shared library with optimization enabled; "std8d" is a 32-bit shared library with optimization enabled.
A convenience option, this switch selects the following switches that are described in this file:
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
A convenience option, this switch selects the following switches that are described in this file:
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
Link with MicroQuill's SmartHeap library for Solaris. This is a library that optimizes calls to new, delete, malloc and free.
The -R flag specifies library search directories to the runtime linker. The information is recorded in the object file and passed to the runtime linker.
The version of SmartHeap that is used can be one of:
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Treat pointer-valued function parameters as restricted pointers.
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
A convenience option, this switch selects several other options that are described in this file.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis:
Disables use of the compiler-provided Cstd header files.
Adds the directory for the Apache C++ Standard Library include files to the search path at compile time.
Adds the directory for the Apache C++ Standard Library include files to the search path at compile time.
Adds the directory for the Apache C++ Standard Library to the search path at link time
Specifies library search directory for the Apache C++ Standard Library for use by the runtime linker. The information is recorded in the object file and passed to the runtime linker.
Link with the Apache C++ Standard Library ("stdcxx"). The conventions for naming libraries are described in the README that comes with stdcxx; for example, "std8D" indicates a 64-bit shared library with optimization enabled; "std8d" is a 32-bit shared library with optimization enabled.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis:
Use STLport's Standard Library implementation instead of the default libCstd.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Allows the compiler to perform type-based alias analysis:
Use STLport's Standard Library implementation instead of the default libCstd.
Perform loop tiling which is enabled by loop skewing. Loop skewing is a transformation that transforms a non-fully interchangeable loop nest to a fully interchangeable loop nest. The optional b<n> sets the tiling block size to n.
Control the optimizer's loop inliner; Set inline callee size limit to n. The unit roughly corresponds to the number of instructions.
A convenience option, this switch selects the following switches that are described in this file:
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects the following switches that are described in this file:
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Specifies how far to prefetch ahead (in loop iterations)
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects the following switches that are described in this file:
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects the following switches that are described in this file:
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Allocate routine local variables on the stack.
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Specify degree of aliasing to be assumed by the compiler. Specifying -xalias without a list gives the best performance for most programs that do not violate Fortran aliasing rules, and corresponds to: -xalias=no%dummy,no%craypointer,no%actual,no%overindex,no%ftnpointer
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
The option instructs the compiler on the number of threads to use for automatically parallelized regions. The nthreads value is only applicable for parallelized regions in the modules that are compiled with this option. The value specified by this option will override any values previously set by the OMP_NUM_THREADS or PARALLEL environment variable. The runtime library may choose to alter the number of threads unless the environment variable OMP_DYNAMIC is set to false.
Note that this is a flag to the "iropt" component of the compilation system. In general, flags may be sent to iropt using "Qoption iropt" from the "f90" and "CC" commands; or using "-W2," from the "cc" command.
Usse object-caching memory allocation library
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Allow the compiler to transform math library calls within loops into calls to the vector math library. Specifying
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Allow optimizer to use x87 hardware instructions for sine, cosine, and rsqrt. The precision and rounding effects are determined by the underlying hardware implementation, rather than by standard IEEE754 semantics.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
Include a library with vectorized versions of some elementary mathematical functions.
Set the preferred page size for running the program.
The option instructs the compiler on the number of threads to use for automatically parallelized regions. The nthreads value is only applicable for parallelized regions in the modules that are compiled with this option. The value specified by this option will override any values previously set by the OMP_NUM_THREADS or PARALLEL environment variable. The runtime library may choose to alter the number of threads unless the environment variable OMP_DYNAMIC is set to false.
Note that this is a flag to the "iropt" component of the compilation system. In general, flags may be sent to iropt using "Qoption iropt" from the "f90" and "CC" commands; or using "-W2," from the "cc" command.
The option instructs the compiler on the number of threads to use for automatically parallelized regions. The nthreads value is only applicable for parallelized regions in the modules that are compiled with this option. The value specified by this option will override any values previously set by the OMP_NUM_THREADS or PARALLEL environment variable. The runtime library may choose to alter the number of threads unless the environment variable OMP_DYNAMIC is set to false.
Note that this is a flag to the "iropt" component of the compilation system. In general, flags may be sent to iropt using "Qoption iropt" from the "f90" and "CC" commands; or using "-W2," from the "cc" command.
Usse object-caching memory allocation library
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Enable unrolling loops n times where possible.
Synonym for -unroll=n
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Fortran is 2. The default for C and C++ is 1.
Generate indirect prefetches for data arrays accessed indirectly.
Collect profile data for feedback-directed optimization (FDO). If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths. As of the Sun Studio 12 version of the compiler suite, the training run gathers information about data values on SPARC systems, but not on x86 systems. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
A convenience option, this switch selects the following switches that are described in this file:
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Specifies the memory model for the compiled binary object. Use -m64 to create 64-bit executables and shared libraries. The default is 32-bit.
Set the preferred page size for running the program.
Enable generation of prefetch instructions on those architectures that support prefetch. val may be one of the following:
If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.
The default is -xprefetch=auto,explicit.
Turn on automatic parallelization for multiple processors.
Analyze loops for reductions such as dot products, maximum and minimum finding.
The option instructs the compiler on the number of threads to use for automatically parallelized regions. The nthreads value is only applicable for parallelized regions in the modules that are compiled with this option. The value specified by this option will override any values previously set by the OMP_NUM_THREADS or PARALLEL environment variable. The runtime library may choose to alter the number of threads unless the environment variable OMP_DYNAMIC is set to false.
Note that this is a flag to the "iropt" component of the compilation system. In general, flags may be sent to iropt using "Qoption iropt" from the "f90" and "CC" commands; or using "-W2," from the "cc" command.
Directs the compiler to print the name and version ID of each component as the compiler executes.
Turns on verbose mode, showing how command options expand. Shows each component as it is invoked.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Controls compiler verbosity. There are several values that can be used with this flag:
The default is -verbose=%none.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
This flag will cause the Fortran compiler to emit verbose messages.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
Turns on verbose mode, showing how command options expand. Shows each component as it is invoked.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
This flag will cause the Fortran compiler to emit verbose messages.
Directs the compiler to print the name and version ID of each component as the compiler executes.
Turns on verbose mode, showing how command options expand. Shows each component as it is invoked.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Controls compiler verbosity. There are several values that can be used with this flag:
The default is -verbose=%none.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
This flag will cause the Fortran compiler to emit verbose messages.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
Directs the compiler to print the name and version ID of each component as the compiler executes.
Turns on verbose mode, showing how command options expand. Shows each component as it is invoked.
Specify the -xjobs option to set how many processes the compiler creates to complete its work. Currently, -xjobs works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the maximum number of code generator instances it can invoke to compile different files.
This flag will cause the Fortran compiler to emit verbose messages.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Allows the compiler to assume that your code does not rely on setting of the errno variable.
Selects faster (but nonstandard) handling of floating point arithmetic exceptions and gradual underflow. The spelling "-fns=yes" is equivalent to "-fns".
Controls simplifying assumptions for floating point arithmetic:
Evaluate float expressions as single precision.
Turns off all IEEE 754 trapping modes.
Cancels forcing expressions to have the precision of the result.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Substitute intrinsic functions or inline system functions where profitable for performance.
Analyze loops for inter-iteration data dependencies, and do loop restructuring.
Use inline expansion for math library, libm.
Select the optimized math library.
Specify optimization level. Can be written either as -xOn or -On, where n indicates:
Allow the compiler to use the frame-pointer register (%ebp on IA32, %rbp on x64) as an unallocated callee-saves register.
Selects options appropriate for the system where the compile is taking place, including architecture, chip, and cache sizes. (These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively.)
Assume data is naturally aligned.
Sets the IEEE 754 trapping mode to common exceptions (invalid, division by zero, and overflow).
This result has been formatted using multiple flags files. The "platform settings" from each of them appears next.
One or more of the following settings may have been applied to the testbed. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
Intel VT-d: Disabled
VT-d, if enabled, supports remapping of I/O DMA transfers for virtualization.
Hardware Prefetch
This BIOS option allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern-recognition algorithm.
Adjacent Cache Line Prefetch
This BIOS option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within an 128-byte sector that contains the data needed due to a cache line miss.
C-State : Disabled
Enable/Disable CPUs to enter C-State (lower power CPU state) while the system is idle. This helps to lower power consumption when enabled.
Data Reuse Optimization : Disabled
Enabling this BIOS option reduces the frequency of L3 cache updates from L1.
This may improve performance by reducing the internal bandwidth consumed by constantly updating L1 cache lines in L3.
Since this results in more fetches to main memory, setting this option to Disabled may improve performance in some cases. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
autoup=<n>
When the file system flush daemon fsflush runs, it writes to disk all modified file buffers that are more
than n seconds old.
lpg_alloc_prefer=<n>
0 = the OS may allocate remote pages if the size requested is readily available in a remote locality group (default)
1 = Set lgroup page allocation to strongly prefer local pages.
maxusers=<n>
To increase the number of user processes derived by the system
rlim_fd_cur=<n>
Defines the soft limit on file descriptors that a single process can have open.
tune_t_fsflushr=<n>
Controls the number of seconds between runs of the file system flush daemon, fsflush.
zfs:zfs_arc_max=<n>
Controls the amount of memory used in bytes by ZFS for caching of file system buffers.
ZFS RAIDZ
In mirrored storage pool configuration, ZFS provides a RAID-Z configuration with either single or double parity fault tolerance. Single-parity RAID-Z is similar to RAID-5. Double-parity RAID-Z is similar to RAID-6.
OMP_DYNAMIC=<TRUE|FALSE>
Enables (TRUE) or disables (FALSE) dynamic adjustment of the number of threads available for execution of parallel
regions. The default is TRUE.
OMP_NESTED=<TRUE|FALSE>
Enables or disables nested parallelism. Value is either TRUE or FALSE. The default is FALSE.
OMP_NUM_THREADS=<n>
If programs have been compiled with -xautopar, this environment variable can be set to the number of
processors that programs should use.
PARALLEL=<n>
If programs have been compiled with -xautopar, this environment variable can be set to the number of
processors that programs should use.
STACKSIZE=<n>
Set the size of the stack (temporary storage area) for each slave thread of a multithreaded program.
SUNW_MP_PROCBIND=<n>
This environment variable can be used to bind the LWPs (lightweight processes) managed by the microtasking library,
libmtsk, to processors. Performance can be enhanced with processor binding, but performance degradation will occur if
multiple LWPs are bound to the same processor.
The value for SUNW_MP_PROCBIND can be:
Integers in the above denote the "logical" processor IDs to which the LWPs are to be bound. Logical processor IDs are
consecutive integers that start with 0, and may or may not be identical to the actual processsor IDs. If n processors are
available online, then their logical processor IDs are 0, 1, ..., n-1.
By default, LWPs are not bound to processors. It is left up to the operating system, Solaris, to schedule LWPs onto processors.
If the value "TRUE" is used, the operating system will bind processes to processors, starting with processor 0.
SUNW_MP_THR_IDLE=SPIN
Controls the end-of-task status of each helper thread executing the parallel part of a program. You can set the value
to spin, sleep ns, or sleep nms. The default is SPIN -- the thread spins (or busy-waits) after completing a parallel task
until a new parallel task arrives.
ulimit -s <n>
Sets the stack size to n kbytes, or "unlimited" to allow the stack size to grow without limit.
submit=echo 'pbind -b...' > dobmk; sh dobmk
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to
cause individual jobs to be bound to specific processors. If so, the specific command may be found in the config file; here
is a brief guide to understanding that command:
Platform settings
One or more of the following settings may have been set. If so, the "General Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
KMP_STACKSIZE
Specify stack size to be allocated for each thread.
KMP_AFFINITY
KMP_AFFINITY = < physical | logical >, starting-core-id
specifies the static mapping of user threads to physical cores. For example,
if you have a system configured with 8 cores, OMP_NUM_THREADS=8 and
KMP_AFFINITY=physical,0 then thread 0 will mapped to core 0, thread 1 will be mapped to core 1, and
so on in a round-robin fashion.
KMP_AFFINITY = granularity=fine,scatter
The value for the environment variable KMP_AFFINITY affects how the threads from an auto-parallelized program are scheduled across processors.
Specifying granularity=fine selects the finest granularity level, causes each OpenMP thread to be bound to a single thread context.
This ensures that there is only one thread per core on cores supporting HyperThreading Technology
Specifying scatter distributes the threads as evenly as possible across the entire system.
Hence a combination of these two options, will spread the threads evenly across sockets, with one thread per physical core.
OMP_NUM_THREADS
Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8
Intel VT-d: Disabled
VT-d, if enabled, supports remapping of I/O DMA transfers for virtualization.
Intel HT Technology : Disabled
This BIOS setting disables/enables Intel Hyper-Threading (HT) Technology. With Intel HT Technology, the operating system can execute two threads in parallel within each processor core.
Hardware Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern-recognition algorithm.
In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Adjacent Sector Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within a 128-byte sector that contains the data needed due to a cache line miss.
In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
L1 Data Prefetch: Enabled
This BIOS option allows the enabling/disabling L1 cache Data prefetch.
High Bandwidth:
Enabling this option allows the chipset to defer memory transactions and process them out of order for optimal performance.
C-State : Disabled
Enable/Disable CPUs to enter C-State (lower power CPU state) while the system is idle. This helps to lower power consumption when enabled.
Data Reuse Optimization : Disabled
Enabling this BIOS option reduces the frequency of L3 cache updates from L1.
This may improve performance by reducing the internal bandwidth consumed by constantly updating L1 cache lines in L3.
Since this results in more fetches to main memory, setting this option to Disabled may improve performance in some cases. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
ulimit -s <n>
Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.
submit= MYMASK=`printf '0x%x' $((1<<$SPECCOPYNUM))`; /usr/bin/taskset $MYMASK $command
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux. The description of the elements of the command are:
Using numactl to bind processes and memory to cores
For multi-copy runs or single copy runs on systems with multiple sockets, it is advantageous to bind a process to a particular core. Otherwise, the OS may arbitrarily move your process from one core to another. This can affect performance. To help, SPEC allows the use of a "submit" command where users can specify a utility to use to bind processes. We have found the utility 'numactl' to be the best choice.
numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a command and inherited by all of its children. The numactl flag "--physcpubind" specifies which core(s) to bind the process. "-l" instructs numactl to keep a process memory on the local node while "-m" specifies which node(s) to place a process memory. For full details on using numactl, please refer to your Linux documentation, 'man numactl'
submit= $[top]/mysubmit.pl $SPECCOPYNUM "$command"
On Xeon 74xx series processors, some benchmarks at peak will run n/2 copies on a system with n logical processors. The mysubmit.pl script assigns each copy in such a way that no two copies will share an L2 cache, for optimal performance. The script looks in /proc/cpuinfo to come up with the list of cores that will satisfy this requirement. The source code is shown below.
Source ******************************************************************************************************
#!/usr/bin/perl use strict; use Cwd; # The order in which we want copies to be bound to cores # Copies: 0, 1, 2, 3 # Cores: 0, 1, 3, 6 my $rundir = getcwd; my $copynum = shift @ARGV; my $i; my $j; my $tag; my $num; my $core; my $numofcores; my @proc; my @cores; open(INPUT, "/proc/cpuinfo") or die "can't open /proc/cpuinfo\n"; #open(OUTPUT, "STDOUT"); # proc[i][0] = logical processor ID # proc[i][1] = physical processor ID # proc[i][2] = core ID $i = 0; $numofcores = 0; while(<INPUT>) { chop; ($tag, $num) = split(/\s+:\s+/, $_); if ($tag eq "processor") { $proc[$i][0] = $num; } if ($tag eq "physical id") { $proc[$i][1] = $num; } if ($tag eq "core id") { $proc[$i][2] = $num; $i++; $numofcores++; } } $i = 0; $j = 0; for $core (0, 4, 2, 1, 5, 3) { while ($i < $numofcores) { if ($proc[$i][2] == $core) { $cores[$j] = $proc[$i][0]; $j++; } $i++; } $i=0; } open RUNCOMMAND, "> runcommand" or die "failed to create run file"; print RUNCOMMAND "cd $rundir\n"; print RUNCOMMAND "@ARGV\n"; close RUNCOMMAND; system 'taskset', '-c', $cores[$copynum], 'sh', "$rundir/runcommand";
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.1.
Report generated on Wed Jul 23 16:22:50 2014 by SPEC CPU2006 flags formatter v6906.