Invoke the Intel C++ compiler
Default:
When the compiler is installed, it detects which version of Visual Studio
is on your system. Qvc defaults to the form of the option that is compatible
with that version. When multiple versions of Visual Studio are installed the
compiler installation lets you select which version you want to use.
This option specifies compatibility with Visual C++ or Visual Studio.
QVC7.1 - Microsoft Visual Studio .NET 2003
QVC8 - Microsoft Visual Studio 2005
QVC9 - Microsoft Visual Studio 2008
Tells the compiler to conform to the ISO/IEC 9899:1999 International Standard.
Invoke the Intel C++ compiler
Default:
When the compiler is installed, it detects which version of Visual Studio
is on your system. Qvc defaults to the form of the option that is compatible
with that version. When multiple versions of Visual Studio are installed the
compiler installation lets you select which version you want to use.
This option specifies compatibility with Visual C++ or Visual Studio.
QVC7.1 - Microsoft Visual Studio .NET 2003
QVC8 - Microsoft Visual Studio 2005
QVC9 - Microsoft Visual Studio 2008
Invoke the Intel C++ compiler
Default:
When the compiler is installed, it detects which version of Visual Studio
is on your system. Qvc defaults to the form of the option that is compatible
with that version. When multiple versions of Visual Studio are installed the
compiler installation lets you select which version you want to use.
This option specifies compatibility with Visual C++ or Visual Studio.
QVC7.1 - Microsoft Visual Studio .NET 2003
QVC8 - Microsoft Visual Studio 2005
QVC9 - Microsoft Visual Studio 2008
Tells the compiler to conform to the ISO/IEC 9899:1999 International Standard.
Invoke the Intel C++ compiler
Default:
When the compiler is installed, it detects which version of Visual Studio
is on your system. Qvc defaults to the form of the option that is compatible
with that version. When multiple versions of Visual Studio are installed the
compiler installation lets you select which version you want to use.
This option specifies compatibility with Visual C++ or Visual Studio.
QVC7.1 - Microsoft Visual Studio .NET 2003
QVC8 - Microsoft Visual Studio 2005
QVC9 - Microsoft Visual Studio 2008
SPEC_CPU_WIN32 sets up types for gcc's compile time arithmetic, reflects the lack of a unistd.g file, sets the size and existence of the __int64 type, and sets the default page size on Windows.
This flag can be used as a portability flag on systems which do not have the standard header file "stdint.h". Inclusion of this flag defines the value of INT64_MIN (if it is not defined) and sets the "int64" type (if it is not set already)
This flag is set when building 464.h264ref on Windows systems.
Pass the command to the C/C++ pre-processor.
SPEC_CPU_WIN32 sets up types for gcc's compile time arithmetic, reflects the lack of a unistd.g file, sets the size and existence of the __int64 type, and sets the default page size on Windows.
This flag can be used as a portability flag on systems which do not have the standard header file "stdint.h". Inclusion of this flag defines the value of INT64_MIN (if it is not defined) and sets the "int64" type (if it is not set already)
This flag is set when building 464.h264ref on Windows systems.
Pass the command to the C/C++ pre-processor.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
This option enables or disables prefetch insertion optimization. The goal
of prefetching is to reduce cache misses by providing hints to the processor
about when data should be loaded into the cache.
On IA-32 architecture and Intel 64 architecture, this option enables prefetching
when higher optimization levels are specified.
This option tells the auto-parallelizer to generate multithreaded code for loops
that can be safely executed in parallel.
To use this option, you must also specify option O2 or O3.
This option tells the compiler to perform a conditional check in a vectorized loop.
This checking avoids unnecessary stores and may improve performance.
-Qvec-guard-write- disables this feature. (default)
set the stack reserve amount specified to the linker
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
This option enables or disables prefetch insertion optimization. The goal
of prefetching is to reduce cache misses by providing hints to the processor
about when data should be loaded into the cache.
On IA-32 architecture and Intel 64 architecture, this option enables prefetching
when higher optimization levels are specified.
Enable C++ Exception Handling and RTTI
This option has the same effect as specifying /GX /GR.
set the stack reserve amount specified to the linker
32-bit MicroQuill SmartHeap Library for Windows available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
This option tells the compiler to assume that the program adheres to ISO C Standard aliasability rules. If your program adheres to these rules, then this option allows the compiler to optimize more aggressively. If it doesn't adhere to these rules, then it can cause the compiler to generate incorrect code.
This option enables or disables prefetch insertion optimization. The goal
of prefetching is to reduce cache misses by providing hints to the processor
about when data should be loaded into the cache.
On IA-32 architecture and Intel 64 architecture, this option enables prefetching
when higher optimization levels are specified.
set the stack reserve amount specified to the linker
32-bit MicroQuill SmartHeap Library for Windows available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
This option tells the compiler to assume that the program adheres to ISO C Standard aliasability rules. If your program adheres to these rules, then this option allows the compiler to optimize more aggressively. If it doesn't adhere to these rules, then it can cause the compiler to generate incorrect code.
This option enables or disables prefetch insertion optimization. The goal
of prefetching is to reduce cache misses by providing hints to the processor
about when data should be loaded into the cache.
On IA-32 architecture and Intel 64 architecture, this option enables prefetching
when higher optimization levels are specified.
set the stack reserve amount specified to the linker
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
set the stack reserve amount specified to the linker
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
This option enables or disables prefetch insertion optimization. The goal
of prefetching is to reduce cache misses by providing hints to the processor
about when data should be loaded into the cache.
On IA-32 architecture and Intel 64 architecture, this option enables prefetching
when higher optimization levels are specified.
set the stack reserve amount specified to the linker
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
On IA-32 Windows platforms, -O2 sets the following:
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Gs, and /Gy.
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
This option tells the compiler to assume that the program adheres to ISO C Standard aliasability rules. If your program adheres to these rules, then this option allows the compiler to optimize more aggressively. If it doesn't adhere to these rules, then it can cause the compiler to generate incorrect code.
set the stack reserve amount specified to the linker
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
Tells the compiler the maximum number of times to unroll loops.
If you do not specify n, the optimizer determines how many times loops can be unrolled.
This option tells the compiler to assume that the program adheres to ISO C Standard aliasability rules. If your program adheres to these rules, then this option allows the compiler to optimize more aggressively. If it doesn't adhere to these rules, then it can cause the compiler to generate incorrect code.
set the stack reserve amount specified to the linker
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
Tells the compiler the maximum number of times to unroll loops.
If you do not specify n, the optimizer determines how many times loops can be unrolled.
set the stack reserve amount specified to the linker
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
Tells the compiler the maximum number of times to unroll loops.
If you do not specify n, the optimizer determines how many times loops can be unrolled.
This option tells the compiler to assume that the program adheres to ISO C Standard aliasability rules. If your program adheres to these rules, then this option allows the compiler to optimize more aggressively. If it doesn't adhere to these rules, then it can cause the compiler to generate incorrect code.
set the stack reserve amount specified to the linker
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
This option tells the compiler to assume that the program adheres to ISO C Standard aliasability rules. If your program adheres to these rules, then this option allows the compiler to optimize more aggressively. If it doesn't adhere to these rules, then it can cause the compiler to generate incorrect code.
Method used for partitioning. Possible values are:
routine: Creates a single region for each routine.
block: Partitions each routine into one region per basic block.
trace: Partitions each routine into one region per trace.
region: Partitions each routine into one region per loop.
default: The compiler determines which method is used for partitioning.
This option selects the method that the register allocator uses to partition each routine into regions.
When setting default is in effect, the compiler attempts to optimize the tradeoff between compile-time
performance and generated code performance.
This option is only relevant when optimizations are enabled (O1 or higher).
set the stack reserve amount specified to the linker
32-bit MicroQuill SmartHeap Library for Windows available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Code is optimized for Intel(R) processors with support for SSE 4.2 instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option improves precision of floating-point divides. It has a slight impact on speed.
With some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-multiplication optimization. The result is more accurate, with some loss of performance.
If you specify -no-prec-div (Linux and Mac OS) or /Qprec-div- (Windows), it enables optimizations that give slightly less precise results than full IEEE division.
This option tells the compiler to assume that the program adheres to ISO C Standard aliasability rules. If your program adheres to these rules, then this option allows the compiler to optimize more aggressively. If it doesn't adhere to these rules, then it can cause the compiler to generate incorrect code.
Method used for partitioning. Possible values are:
routine: Creates a single region for each routine.
block: Partitions each routine into one region per basic block.
trace: Partitions each routine into one region per trace.
region: Partitions each routine into one region per loop.
default: The compiler determines which method is used for partitioning.
This option selects the method that the register allocator uses to partition each routine into regions.
When setting default is in effect, the compiler attempts to optimize the tradeoff between compile-time
performance and generated code performance.
This option is only relevant when optimizations are enabled (O1 or higher).
set the stack reserve amount specified to the linker
32-bit MicroQuill SmartHeap Library for Windows available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
This allows alloca to be set to the compiler's preferred alloca by SPEC rules.
This allows alloca to be set to the compiler's preferred alloca by SPEC rules.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
This option enables read only string-pooling optimization.
This option enables read/write string-pooling optimization.
Specifies the level of inline function expansion.
Ob0 - Disables inlining of user-defined functions. Note that statement functions are always inlined.
Ob1 - Enables inlining when an inline keyword or an inline attribute is specified. Also enables inlining according to the C++ language.
Ob2 - Enables inlining of any function at the compiler's discretion.
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
On IA-32 Windows platforms, -O2 sets the following:
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Gs, and /Gy.
Disables inline expansion of all intrinsic functions.
This option disables stack-checking for routines with 4096 bytes of local variables and compiler temporaries.
Allows use of EBP as a general-purpose register in optimizations.
This option tells the compiler to separate functions into COMDATs for the linker.
This option enables most speed optimizations, but disables some that increase code size for a small speed benefit.
This option enables global optimizations.
Enables optimizations for speed and disables some optimizations that
increase code size and affect speed.
To limit code size, this option:
- Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling.
- Disables intrinsic recognition and intrinsics inlining.
The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops.
On IA-32 Windows platforms, -O1 sets the following:
/Qunroll0, /Oi-, /Op-, /Oy, /Gy, /Os, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Ob2, and /Og
Tells the compiler the maximum number of times to unroll loops.
If you do not specify n, the optimizer determines how many times loops can be unrolled.
Disables conformance to the ANSI C and IEEE 754 standards for floating-point arithmetic.
This option enables C++ exception handling.
Enables C++ Run Time Type Information (RTTI).
Platform settings
One or more of the following settings may have been set. Please see the Notes section of the report to determine which, if any, have been modified.
Adjacent Cache Line Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within an 128-byte sector that contains the data needed due to a cache line miss.
In some limited cases, setting this option from the Default may improve performance. In the majority of cases, the default setting provides better performance. Users should modify this option after performing application benchmarking to verify improved performance in their environment.
Hardware Prefetch:
This BIOS option allows allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern recognition algorithm.
In some limited cases, setting this option to Disabled may improve performance. In the majority of cases, the option set to Enabled provides better performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Hyper-Threading Technology
This BIOS setting disables/enables Hyper-Threading (HT) Technology. HT enables the processor to allocate an additional thread to a core.
Memory Node Interleaving
This BIOS setting when set to NUMA (Non-Uniform Memory Access) configures the system memory into blocks local to each processor. A NUMA-aware operating system can use this configuration to intelligently allocate memory for optimal performance.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.1.
Report generated on Wed Jul 23 00:00:34 2014 by SPEC CPU2006 flags formatter v6906.