CPU2006 Flag Description
IBM Corporation IBM BladeCenter LS42 (AMD Opteron 8380)

This result has been formatted using multiple flags files. The "default header section" from each of them appears next.


Default header section from pgi72_linux_flags

PGI Server Complete for Linux, Release 7.2. Optimization, Compiler, and Other flags for use by SPEC CPU2006


Default header section from CPU2006_flags

PathScale Compiler Suite SPEC CPU2006 Flag Description

Copyright © 2007, 2008 Pathscale LLD. 2006, 2007. QLogic Corporation. All rights reserved.

Compilers: PathScale Compiler Suite



Base Compiler Invocation

C benchmarks

C++ benchmarks


Peak Compiler Invocation

C benchmarks (except as noted below)

456.hmmer

462.libquantum

C++ benchmarks (except as noted below)

483.xalancbmk


Base Portability Flags

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

483.xalancbmk


Peak Portability Flags

400.perlbench

401.bzip2

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

483.xalancbmk


Base Optimization Flags

C benchmarks

C++ benchmarks


Peak Optimization Flags

C benchmarks

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

C++ benchmarks

471.omnetpp

473.astar

483.xalancbmk


Base Other Flags

C benchmarks

C++ benchmarks


Peak Other Flags

C benchmarks

456.hmmer

462.libquantum

C++ benchmarks (except as noted below)

483.xalancbmk


Implicitly Included Flags

This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.


System and Other Tuning Information

Linux Huge Page settings

In order to take full advantage of using PGI's huge page runtime library, your system must be configured to use huge pages. It is safe to run binaries compiled with "-Msmartalloc=huge" on systems not configured to use huge pages, however, you will not benefit from the performance improvements huge pages offer. To configure your system for huge pages perform the following steps:

Note that further information about huge pages may be found in your Linux documentation file: /usr/src/linux/Documentation/vm/hugetlbpage.txt

PGI_HUGE_PAGES

The maximum number of huge pages an application is allowed to use can be set at run time via the environment variable PGI_HUGE_PAGES. If not set, then the process may use all available huge pages when compiled with "-Msmartalloc=huge" or a maximum of n pages where the value of n is set via the compile time flag "-Msmartalloc=huge:n.

Using numactl to bind processes and memory to cores

For multi-copy runs or single copy runs on systems with multiple sockets, it is advantageous to bind a process to a particular core. Otherwise, the OS may arbitrarily move your process from one core to another. This can effect performance. To help, SPEC allows the use of a "submit" command where users can specify a utility to use to bind processes. We have found the utility 'numactl' to be the best choice.

numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a command and inherited by all of its children. The numactl flag "--physcpubind" specifies which core(s) to bind the process. "-l" instructs numactl to keep a process memory on the local node while "-m" specifies which node(s) to place a process memory. For full details on using numactl, please refer to your Linux documentation, 'man numactl'

Note that some versions of numactl, particularly the version found on SLES 10, we have found that the utility incorrectly interprets application arguments as it's own. For example, with the command "numactl --physcpubind=0 -l a.out -m a", numactl will interpret a.out's "-m" option as it's own "-m" option. To work around this problem, a user can put the command to be run in a shell script and then run the shell script using numactl. For example: "echo 'a.out -m a' > run.sh ; numactl --physcpubind=0 bash run.sh"

ulimit -s <n>

Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.

ulimit -l <n>

Sets the maximum size of memory that may be locked into physical memory.

NCPUS

Sets the maximum number of OpenMP parallel threads auto-parallelized (-Mconcur) applications may use.

Processor Performance States

Disabling this option sets the CPUs to the highest supported frequency.

Memory ChipKill

Disabling this option halts ECC memory's ability to correct multi-bit memory errors.

HUGETLB_MORECORE

Setting this to yes instructs libhugetlbfs to override libc's normal morecore() function with a hugepage version and use it for malloc().


Flag description origin markings:

[user] Indicates that the flag description came from the user flags file.
[suite] Indicates that the flag description came from the suite-wide flags file.
[benchmark] Indicates that the flag description came from a per-benchmark flags file.

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2006/flags/pgi72_linux_flags.html,
http://www.spec.org/cpu2006/flags/CPU2006_flags.20090710.html,
http://www.spec.org/cpu2006/flags/amd-platform-amd909gh.20090713.html.

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2006/flags/pgi72_linux_flags.xml,
http://www.spec.org/cpu2006/flags/CPU2006_flags.20090710.xml,
http://www.spec.org/cpu2006/flags/amd-platform-amd909gh.20090713.xml.


For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.1.
Report generated on Tue Jul 22 21:10:40 2014 by SPEC CPU2006 flags formatter v6906.