Copyright © 2006 Intel Corporation. All Rights Reserved.
Invoke the Intel C/C++ compiler for IA32 applications in VS 2005 compatibility mode
Invoke the Intel C++ compiler in C99 mode
Invoke the Intel C/C++ compiler for IA32 applications in VS 2005 compatibility mode
Invoke the Intel Fortran compiler for IA32 applications
Invoke the Intel C/C++ compiler for IA32 applications in VS 2005 compatibility mode
Invoke the Intel C++ compiler in C99 mode
Invoke the Intel C/C++ compiler for IA32 applications in VS 2005 compatibility mode
Invoke the Intel Fortran compiler for IA32 applications
For mixed-language benchmarks, tell the compiler to convert routine names to lowercase for compatibility
For mixed-language benchmarks, tell the compiler to assume that routine names end with an underscore
Tell the compiler to treat source files as C++ regardless of the file extension
Defined if the compiler refuses to allow the explicit specialization of static member variables.
Definitions for Windows and Intel Compiler
SPEC_CPU_NOZMODIFIER can be used if your compiler does not implement the C99 standard printf length modifier "z". You'll know you need this flag if validation fails with the file SPECtestformatmodifier_z.txt
For mixed-language benchmarks, tell the compiler to convert routine names to lowercase for compatibility
This macro indicates that the benchmark is being built on a Windows system using the Intel C++ compiler.
For mixed-language benchmarks, tell the compiler to convert routine names to lowercase for compatibility
For mixed-language benchmarks, tell the compiler to assume that routine names end with an underscore
Tell the compiler to treat source files as C++ regardless of the file extension
Defined if the compiler refuses to allow the explicit specialization of static member variables.
Definitions for Windows and Intel Compiler
SPEC_CPU_NOZMODIFIER can be used if your compiler does not implement the C99 standard printf length modifier "z". You'll know you need this flag if validation fails with the file SPECtestformatmodifier_z.txt
For mixed-language benchmarks, tell the compiler to convert routine names to lowercase for compatibility
This macro indicates that the benchmark is being built on a Windows system using the Intel C++ compiler.
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Enable C++ Exception Handling and RTTI
This option has the same effect as specifying /GX /GR.
set the stack reserve amount specified to the linker
MicroQuill SmartHeap Library available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
Tells the compiler to assume there is no aliasing.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
This option enables scalar replacement performed during loop transformation. To use this option, you must also specify O3. -Qscalar-rep- disables this optimization.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler to assume there is no aliasing.
Enable C++ Exception Handling and RTTI
This option has the same effect as specifying /GX /GR.
set the stack reserve amount specified to the linker
MicroQuill SmartHeap Library available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
Enable C++ Exception Handling and RTTI
This option has the same effect as specifying /GX /GR.
set the stack reserve amount specified to the linker
MicroQuill SmartHeap Library available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Enable C++ Exception Handling and RTTI
This option has the same effect as specifying /GX /GR.
set the stack reserve amount specified to the linker
MicroQuill SmartHeap Library available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
Enable C++ Exception Handling and RTTI
This option has the same effect as specifying /GX /GR.
set the stack reserve amount specified to the linker
MicroQuill SmartHeap Library available from http://www.microquill.com/
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
Specifies the level of inline function expansion.
Ob0 - Disables inlining of user-defined functions. Note that statement functions are always inlined.
Ob1 - Enables inlining when an inline keyword or an inline attribute is specified. Also enables inlining according to the C++ language.
Ob2 - Enables inlining of any function at the compiler's discretion.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
This option enables scalar replacement performed during loop transformation. To use this option, you must also specify O3. -Qscalar-rep- disables this optimization.
set the stack reserve amount specified to the linker
Code is optimized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
On IA-32 Windows platforms, -O2 sets the following:
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Gs, and /Gy.
-Qprec-div- enables optimizations that give slightly less precise results than full IEEE division.
When you specify -Qprec-div- along with some optimizations, such as /QxT, the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -Qprec-div- which will enable the default -Qprec-div and the result is more accurate, with some loss of performance.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
This option enables scalar replacement performed during loop transformation. To use this option, you must also specify O3. -Qscalar-rep- disables this optimization.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
Specifies the level of inline function expansion.
Ob0 - Disables inlining of user-defined functions. Note that statement functions are always inlined.
Ob1 - Enables inlining when an inline keyword or an inline attribute is specified. Also enables inlining according to the C++ language.
Ob2 - Enables inlining of any function at the compiler's discretion.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
This option places local variables, except those declared as SAVE, to the run-time stack. It is as if the variables were declared with the AUTOMATIC attribute.
It does not affect variables that have the SAVE attribute or ALLOCATABLE attribute, or variables that appear in an EQUIVALENCE statement or in a common block.
This option may provide a performance gain for your program, but if your program depends on variables having the same value as the last time the routine was invoked, your program may not function properly.
If you want to cause variables to be placed in static memory, specify /Qsave (Windows).
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler to assume there is no aliasing.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
set the stack reserve amount specified to the linker
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-Qprec-div- (disable -prec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Enables more aggressive unrolling heuristics
set the stack reserve amount specified to the linker
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option enables read only string-pooling optimization.
This option enables read/write string-pooling optimization.
Specifies the level of inline function expansion.
Ob0 - Disables inlining of user-defined functions. Note that statement functions are always inlined.
Ob1 - Enables inlining when an inline keyword or an inline attribute is specified. Also enables inlining according to the C++ language.
Ob2 - Enables inlining of any function at the compiler's discretion.
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
On IA-32 Windows platforms, -O2 sets the following:
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Gs, and /Gy.
Disables inline expansion of all intrinsic functions.
This option disables stack-checking for routines with 4096 bytes of local variables and compiler temporaries.
Allows use of EBP as a general-purpose register in optimizations.
This option tells the compiler to separate functions into COMDATs for the linker.
This option enables most speed optimizations, but disables some that increase code size for a small speed benefit.
This option enables global optimizations.
Enables optimizations for speed and disables some optimizations that
increase code size and affect speed.
To limit code size, this option:
- Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling.
- Disables intrinsic recognition and intrinsics inlining.
The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops.
On IA-32 Windows platforms, -O1 sets the following:
/Qunroll0, /Oi-, /Op-, /Oy, /Gy, /Os, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Ob2, and /Og
Tells the compiler the maximum number of times to unroll loops. A value of 0 disables loop unrolling.
Disables conformance to the ANSI C and IEEE 754 standards for floating-point arithmetic.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Code is optimized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
-Qprec-div- enables optimizations that give slightly less precise results than full IEEE division.
When you specify -Qprec-div- along with some optimizations, such as /QxT, the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -Qprec-div- which will enable the default -Qprec-div and the result is more accurate, with some loss of performance.
This option enables C++ exception handling.
Enables C++ Run Time Type Information (RTTI).
Platform settings
One or more of the following settings may have been set. If so, the "General Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
KMP_STACKSIZE
Specify stack size to be allocated for each thread.
KMP_AFFINITY
KMP_AFFINITY = < physical | logical >, starting-core-id
specifies the static mapping of user threads to physical cores. For example,
if you have a system configured with 8 cores, OMP_NUM_THREADS=8 and
KMP_AFFINITY=physical,0 then thread 0 will mapped to core 0, thread 1 will be mapped to core 1, and
so on in a round-robin fashion.
OMP_NUM_THREADS
Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8
Hardware Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern-recognition algorithm.
In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Adjacent Sector Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within an 128-byte sector that contains the data needed due to a cache line miss.
In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
submit= specperl -e "system sprintf qq{start /b /wait /affinity %x %s}, (1<<$SPECUSERNUM), qq{ $command } "
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux. The description of the elements of the command are:
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.0.
Report generated on Tue Jul 22 18:41:25 2014 by SPEC CPU2006 flags formatter v6906.