This result has been formatted using multiple flags files. The "default header section" from each of them appears next.
Copyright © 2006 Intel Corporation. All Rights Reserved.
Copyright © 2007 Intel Corporation. All Rights Reserved.
Invoke the Intel C compiler 11.0 for IA32 applications.
You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors
Invoke the Intel C++ compiler 11.0 for IA32 applications.
You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors
Invoke the Intel C compiler 11.0 for IA32 applications.
You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors
Invoke the Intel C/C++ compiler 11.0 for Intel 64 applications
Compiler option to set the path for library files. Used in some integer peak benchmarks which were built using the Intel 64-bit C++ compiler.
Compiler option to set the path for include files. Used in some integer peak benchmarks which were built using the Intel 64-bit C++ compiler.
Invoke the Intel C/C++ compiler 11.0 for Intel 64 applications
Compiler option to set the path for library files. Used in some integer peak benchmarks which were built using the Intel 64-bit C++ compiler.
Compiler option to set the path for include files. Used in some integer peak benchmarks which were built using the Intel 64-bit C++ compiler.
Invoke the Intel C++ compiler 11.0 for IA32 applications.
You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors
This macro indicates that the benchmark is being compiled on an Intel IA32-compatible system running the Linux operating system.
Portability changes for Linux
This flag can be set for SPEC compilation for Linux using default compiler.
This macro indicates that the benchmark is being compiled on an Intel IA32-compatible system running the Linux operating system.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Portability changes for Linux
This flag can be set for SPEC compilation for Linux using default compiler.
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Compiler option to statically link in libraries at link time
Tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel. To use this option, you must also specify option O2 or O3. The default numbers of threads spawned is equal to the number of processors detected in the system where the binary is compiled. Can be changed by setting the environment variable OMP_NUM_THREADS
Enable compiler to generate runtime control code for effective automatic parallelization. This option generates code to perform run-time checks for loops that have symbolic loop bounds. If the granularity of a loop is greater than the parallelization threshold, the loop will be executed in parallel. If you do not specify this option, the compiler may not parallelize loops with symbolic loop bounds if the compile-time granularity estimation of a loop can not ensure it is beneficial to parallelize the loop.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
MicroQuill SmartHeap Library V8.1 available from http://www.microquill.com/
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Compiler option to statically link in libraries at link time
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Compiler option to statically link in libraries at link time
This option instructs the compiler to analyze and transform the program so that 64-bit pointers are shrunk to 32-bit pointers, and 64-bit longs (on Linux) are shrunk into 32-bit longs wherever it is legal and safe to do so. In order for this option to be effective the compiler must be able to optimize using the -ipo/-Qipo option and must be able to analyze all library/external calls the program makes.
This option requires that the size of the program executable never exceeds 2^32 bytes and all data values can be represented within 32 bits. If the program can run correctly in a 32-bit system, these requirements are implicitly satisfied. If the program violates these size restrictions, unpredictable behavior might occur.
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Compiler option to statically link in libraries at link time
Directs the compiler to inline calloc() calls as malloc()/memset()
The compiler adds setup code in the C/C++/Fortran main function to enable optimal malloc algorithms:
The two parameters, M_MMAP_MAX and M_TRIM_THRESHOLD, are described below
Function: int mallopt (int param, int value) When calling mallopt, the param argument specifies the parameter to be set, and value the new value to be set. Possible choices for param, as defined in malloc.h, are:
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Compiler option to statically link in libraries at link time
Is the maximum number of times a loop can be unrolled. To disable loop enrolling, use -unroll0.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
This option instructs the compiler to analyze and transform the program so that 64-bit pointers are shrunk to 32-bit pointers, and 64-bit longs (on Linux) are shrunk into 32-bit longs wherever it is legal and safe to do so. In order for this option to be effective the compiler must be able to optimize using the -ipo/-Qipo option and must be able to analyze all library/external calls the program makes.
This option requires that the size of the program executable never exceeds 2^32 bytes and all data values can be represented within 32 bits. If the program can run correctly in a 32-bit system, these requirements are implicitly satisfied. If the program violates these size restrictions, unpredictable behavior might occur.
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Compiler option to statically link in libraries at link time
Is the maximum number of times a loop can be unrolled. To disable loop enrolling, use -unroll0.
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Compiler option to statically link in libraries at link time
Is the maximum number of times a loop can be unrolled. To disable loop enrolling, use -unroll0.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
Select the method that the register allocator uses to partition each routine into regions
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
MicroQuill SmartHeap Library V8.1 available from http://www.microquill.com/
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
Code is optimized for Intel(R) processors with support for SSE 4.1i instructions. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement, and loop and memory access transformations. Enables optimizations for maximum speed, such as:
On IA-32 and Intel EM64T processors, when O3 is used with options -ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler performs more aggressive data dependency analysis than for O2, which may result in longer compilation times. The O3 optimizations may not cause higher performance unless loop and memory access transformations take place. The optimizations may slow down code in some cases compared to O2 optimizations. The O3 option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets.
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div. This will enable the default -prec-div and the result will be more accurate, with some loss of performance.
Enable/disable(DEFAULT) use of ANSI aliasing rules in optimizations; user asserts that the program adheres to these rules.
Select the method that the register allocator uses to partition each routine into regions
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
MicroQuill SmartHeap Library V8.1 available from http://www.microquill.com/
This allows alloca to be set to the compiler's preferred alloca by SPEC rules.
This allows alloca to be set to the compiler's preferred alloca by SPEC rules.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
Enables optimizations for speed and disables some optimizations that increase code size and affect speed.
To limit code size, this option:
The O1 option may improve performance for applications with very large code size, many branches, and execution time not dominated by code within loops.
-O1 sets the following options:Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would disable unrolling of loops.
-fno-builtin disables inline expansion for all intrinsic functions.
This option trades off floating-point precision for speed by removing the restriction to conform to the IEEE standard.
EBP is used as a general-purpose register in optimizations.
Places each function in its own COMDAT section.
Flushes denormal results to zero.
Platform settings
One or more of the following settings may have been set. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
Power Regulator for ProLiant support (Default=HP Dynamic Power Savings Mode)
Values for this BIOS setting can be:
Adjacent Sector Prefetch (Default = Enabled):
This BIOS option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within an 128-byte sector that contains the data needed due to a cache line miss.
In some limited cases, setting this option to Disabled may improve performance. In the majority of cases, the default value of Enabled provides better performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Hardware Prefetch (Default = Enabled):
This BIOS option allows allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern recognition algorithm.
In some limited cases, setting this option to Disabled may improve performance. In the majority of cases, the default value of Enabled provides better performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Defer All Transactions Mode (Default = Disabled):
When this option is enabled, front-side bus bandwidth may be increased on systems with heavy I/O workload because CPU initiated I/O transactions can be deferred enabling other transactions to make progress while data is retrieved. However, latency for completing transactions may also increase. The system's workload will determine which setting will provide highest performance.
submit= MYMASK=`printf '0x%x' \$((1<<\$SPECCOPYNUM))`; /usr/bin/taskset \$MYMASK $command
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux. The description of the elements of the command are:
mysubmit.pl
This perl script is used to ensure that for a system with N cores the first N/2 benchmark copies are bound to a core that does not share its L2 cache with any of the other copies. The script does this by retrieving and using CPU data from /proc/cpuinfo. Note this script will only work for 6-core CPUs.
ulimit -s [n | unlimited] (Linux)
Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.
KMP_STACKSIZE=integer[B|K|M|G|T] (Linux)
Sets the number of bytes to allocate for each parallel thread to use as its private stack. Use the optional suffix B, K, M, G, or T, to specify bytes, kilobytes, megabytes, gigabytes, or terabytes. The default setting is 2M on IA32 and 4M on IA64.
KMP_AFFINITY=physical,n (Linux)
Assigns threads to consecutive physical processors (for example, cores), beginning at processor n. Specifies the static mapping of user threads to physical cores, beginning at processor n. For example, if a system is configured with 8 cores, and OMP_NUM_THREADS=8 and KMP_AFFINITY=physical,2 are set, then thread 0 will mapped to core 2, thread 1 will be mapped to core 3, and so on in a round-robin fashion.
OMP_NUM_THREADS=n
This Environment Variable sets the maximum number of threads to use for OpenMP*
parallel regions to n if no other value is specified in the application. This
environment variable applies to both -openmp and -parallel (Linux)
or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8
cores:
export OMP_NUM_THREADS=8
Default is the number of cores visible to the OS.
vm.max_map_count-n (Linux)
The maximum number of memory map areas a process may have. Memory map areas are used as a side-effect of calling malloc, directly by mmap and mprotect, and also when loading shared libraries.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.1.
Report generated on Tue Jul 22 19:33:00 2014 by SPEC CPU2006 flags formatter v6906.