Copyright © 2006 Intel Corporation. All Rights Reserved.
Invoke the Intel C compiler 10.1 for IA32 applications.
You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors
Invoke the Intel C++ compiler for IA32 and Intel 64 applications.
You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors
This macro indicates that the benchmark is being compiled on an Intel IA32-compatible system running the Linux operating system.
Portability changes for Linux
This flag can be set for SPEC compilation for Linux using default compiler.
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-ipo (enables interprocedural optimizations across files)
-xT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3)
-static Statically link in libraries at link time
-no-prec-div (disable -prec-div) where -prec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xT or QxT option which can't be overridden. The options set by /fast may change from release to release.
Directs the compiler to inline calloc() calls as malloc()/memset()
The compiler adds setup code in the C/C++/Fortran main function to enable optimal malloc algorithms:
Function: int mallopt (int param, int value) When calling mallopt, the param argument specifies the parameter to be set, and value the new value to be set. Possible choices for param, as defined in malloc.h, are:
Code is optimized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div which will enable the default -prec-div and the result is more accurate, with some loss of performance.
Enable SmartHeap and/or other library usage by forcing the linker to ignore multiple definitions if present
MicroQuill SmartHeap Library V8.1 available from http://www.microquill.com/
This allows alloca to be set to the compiler's preferred alloca by SPEC rules.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option enables read only string-pooling optimization.
This option enables read/write string-pooling optimization.
Specifies the level of inline function expansion.
Ob0 - Disables inlining of user-defined functions. Note that statement functions are always inlined.
Ob1 - Enables inlining when an inline keyword or an inline attribute is specified. Also enables inlining according to the C++ language.
Ob2 - Enables inlining of any function at the compiler's discretion.
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
On IA-32 Windows platforms, -O2 sets the following:
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Gs, and /Gy.
Disables inline expansion of all intrinsic functions.
This option disables stack-checking for routines with 4096 bytes of local variables and compiler temporaries.
Allows use of EBP as a general-purpose register in optimizations.
This option tells the compiler to separate functions into COMDATs for the linker.
This option enables most speed optimizations, but disables some that increase code size for a small speed benefit.
This option enables global optimizations.
Enables optimizations for speed and disables some optimizations that
increase code size and affect speed.
To limit code size, this option:
- Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling.
- Disables intrinsic recognition and intrinsics inlining.
The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops.
On IA-32 Windows platforms, -O1 sets the following:
/Qunroll0, /Oi-, /Op-, /Oy, /Gy, /Os, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Ob2, and /Og
Tells the compiler the maximum number of times to unroll loops. For example -unroll2 would unroll a maximum of 2 times.
Disables conformance to the ANSI C and IEEE 754 standards for floating-point arithmetic.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Code is optimized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors and Intel(R) Xeon(R) processors with SSSE3. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
Compiler option to statically link in libraries at link time
-no-prec-div enables optimizations that give slightly less precise results than full IEEE division.
When you specify -no-prec-div along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -no-prec-div which will enable the default -prec-div and the result is more accurate, with some loss of performance.
Platform settings
One or more of the following settings may have been set. If so, the "General Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
OMP_NUM_THREADS
Sets the maximum number of threads to use for OpenMP* parallel regions
if no other value is specified in the application.
This environment variable applies to both -openmp and -parallel
(Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows).
Example syntax on a Linux system with 8 cores:
export OMP_NUM_THREADS=8
Default is the number of cores visible to the OS.
KMP_AFFINITY
KMP_AFFINITY =
Hardware Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern-recognition algorithm.
In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Adjacent Sector Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within an 128-byte sector that contains the data needed due to a cache line miss.
In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
ulimit -s
Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.
submit= MYMASK=`printf '0x%x' \$((1<<\$SPECCOPYNUM))`; /usr/bin/taskset \$MYMASK $command
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux. The description of the elements of the command are:
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.0.
Report generated on Tue Jul 22 15:57:19 2014 by SPEC CPU2006 flags formatter v6906.