Compilers |
Sun Studio 12
GCC for SPARC Systems V4.2.0 (gccfss).
Note: these compilers are described together because gccfss uses the same optimizing code generator as Studio 12. |
---|---|
Operating systems: | Solaris 10 |
Copyright: |
The text for many of the descriptions below was excerpted from the Sun Studio Compiler Documentation, which is copyright © 2005 Sun Microsystems, Inc. The original documentation can be found at docs.sun.com. Some material below is quoted from the gccfss website, http://cooltools.sunsource.net/gcc/. Additional information about GCC options may be found at the The GNU C documentation website. |
Last updated: 29-Dec-2007 jh |
Invoke GCC for SPARC Systems, targetting C++ programs, and automatically adding the C++ library. See http://cooltools.sunsource.net/gcc/ for more information.
Note: this compiler is sometimes referenced below as "g-plus-plus" due to a limitation in how SPEC reports flags (it uses the XML name, and under the XML specification, such names are not allowed to use plus signs). The actual spelling used on the command line is "g++".
Invoke GCC for SPARC Systems, targetting C++ programs, and automatically adding the C++ library. See http://cooltools.sunsource.net/gcc/ for more information.
Note: this compiler is sometimes referenced below as "g-plus-plus" due to a limitation in how SPEC reports flags (it uses the XML name, and under the XML specification, such names are not allowed to use plus signs). The actual spelling used on the command line is "g++".
This macro indicates that the benchmark is being compiled on a SPARC/Solaris system.
Enables portability changes for Solaris
Portability changes for systems which need _Complex_I to be defined as 1.0fi
This flag can be set for SPEC compilation for Solaris using default compiler.
This macro indicates that the benchmark is being compiled on a SPARC/Solaris system.
Enables portability changes for Solaris
Portability changes for systems which need _Complex_I to be defined as 1.0fi
This flag can be set for SPEC compilation for Solaris using default compiler.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
Allows the compiler to perform type-based alias analysis at the specified alias level:
Treat pointer-valued function parameters as restricted pointers.
This library provides faster versions of some common functions, such as malloc/free and bcopy.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
Allows the compiler to perform type-based alias analysis at the specified alias level:
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
Allows the compiler to perform type-based alias analysis at the specified alias level:
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Treat pointer-valued function parameters as restricted pointers.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
Allows the compiler to perform type-based alias analysis at the specified alias level:
This library provides faster versions of some common functions, such as malloc/free and bcopy.
Collect profile data for feedback-directed optimization. If an option directory is named, the feedback will be stored there.
When FDO is used, the training run gathers information regarding execution paths and data values. Hardware performance counters are not used. FDO improves existing optimizations but does not introduce new classes of optimization.
For gccfss, profile collection works the same as Sun Studio on SPARC.
Use data collected for profile feedback. If an option directory is named, look for the feedback data there.
A convenience option, this switch selects several other options that are described in this file.
Perform optimizations across all object files in the link step:
At -xipo=2, the compiler performs inter-procedural aliasing analysis as well as optimization of memory allocation and layout to improve cache performance.
Set the preferred page size for running the program.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
This library provides faster versions of some common functions, such as malloc/free and bcopy.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Allow faster math operations:
Programs that depend upon strict IEEE 754 conformance should not use this option.
In addition to the optimizations at -O2: add automatic inlining of functions in the same file, and use optmization algorithms that may take significantly more compilation time or that do not have as high a probability of improving execution time, such as speculative code motion.
With -O1, also spelled "-O", optimizations include: basic local and global optimizations, such as induction variable elimination, common subexpression elimination, constant propogation, register allocation, and basic block merging.
Selects faster (but nonstandard) handling of floating point arithmetic exceptions and gradual underflow.
Controls simplifying assumptions for floating point arithmetic:
Turns off all IEEE 754 trapping modes.
Allows the compiler to perform type-based alias analysis at the specified alias level:
Substitute intrinsic functions or inline system functions where profitable for performance.
Analyze loops for inter-iteration data dependencies, and do loop restructuring.
Use inline expansion for math library, libm.
Select the optimized math library.
Allow generation of prefetch instructions. -xprefetch=yes and -xprefetch are synonyms for -xprefetch=auto,explicit. -xprefetch=no is a synonym for -xprefetch=no%auto,no%explicit
Control the level of searching that the compiler does for prefetch opportunities by setting n to 1, 2, or 3, where higher numbers mean to do more searching. The default for Sun Studio C and Sun Studio C++ is 1. The default for Sun Studio Fortran and for gccfss is 2.
Selects options for architecture, chip timing, and cache sizes. These can also be controlled separately, via -xarch, -xchip, and -xcache, respectively. A wide variety of targets can be selected, including ultra3, ultra3cu, ultra3i, ultra3iplus, ultra4, ultra4plus, ultraT1, ultraT2, sparc64vi. In each case, appropriate options are selected for architecture, chip timing, and cache size to match that target.
If -xtarget=native is selected, options that are appropriate for the system where the compile is being done.
The default is -xtarget=generic, which sets the parameters for the best performance over most 32-bit platform architectures.
On Solaris SPARC systems, the default pointer size with -xtarget=native is 32-bit.
Specifies which instructions can be used. Among the choices are:
xcache defines the cache properties for use by the optimizer. It can specify use of default assumptions ("generic"); use of whatever the compiler can assume about the current platform ("native"); or an explicit description of up to three levels of cache, using colon-separated specifiers of the form si/li/ai, where:
xchip determines timing properties that are assumed by the compiler. It does not limit which instructions are allowed (see xtarget for that). Among the choices are:
Platform settings
One or more of the following settings may have been applied to the testbed. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
autoup=<n> (Unix /etc/system)
When the file system flush daemon fsflush runs, it writes to disk all modified file buffers that are more
than n seconds old.
bufhwm=<n> (Unix /etc/system)
Sets the upper limit of the file system buffer cache. The units for bufhwm are in kilobytes.
cpu_bringup_set=<n> (Unix /etc/system)
Specifies which processors are enabled at boot time. <n> represents a bitmap of the
processors to be brought online.
disablecomponent (System Management Services)
This command can be used prior to booting the system for a 1-cpu test. The tester uses disablecomponent to
add all other CPUs to the "blacklist", which is a list of components that cannot be used at boot time.
LD_LIBRARY_PATH=<directories> (linker)
LD_LIBRARY_PATH controls the search order for both the compile-time and run-time linkers. Usually, it can be
defaulted; but testers may sometimes choose to explicitly set it (as documented in the notes in the submission), in order to
ensure that the correct versions of libraries are picked up.
LD_PRELOAD=<shared object> (Unix environment variable)
Adds the named shared object to the runtime environment.
MADV=access_lwp and LD_PRELOAD=madv.so.1 (Unix environment variables)
When the madv.so.1 shared object is present in the LD_PRELOAD list, it is possible to provide advice to the system
about how memory is likely to be accessed. The advice present in MADV applies to all processes and their descendants. A
commonly used value is access_lwp, which means that when memory is allocated, the next process to touch it will be
the primary user. Examples of other possible values include sequential, for memory that is used only once and
then no longer needed and acces_many when many processes will be sharing data.
MPSSHEAP=<size>, MPSSSTACK=<size>, and
LD_PRELOAD=mpss.so.1 (Unix environment variables)
When these variables are set, the mpss.so.1 shared object will set the preferred page size for new processes, and their
descendants, to the requested sizes for the heap and stack.
PARALLEL=<n> (Unix environment variable)
If programs have been compiled with -xautopar, this environment variable can be set to the number of
processors that programs should use.
segmap_percent=<n> (Unix /etc/system)
This value controls the size of the segmap cache as a percent of total memory. Set this value to help keep the file system cache from consuming memory unnecessarily.
STACKSIZE=<n> (Unix environment variable)
Set the size of the stack (temporary storage area) for each slave thread of a multithreaded program.
submit=echo 'pbind -b...' > dobmk; sh dobmk (SPEC tools, Unix shell)
When running multiple copies of benchmarks, the SPEC config file feature submit is sometimes used to
cause individual jobs to be bound to specific processors. If so, the specific command may be found in the config file; here
is a brief guide to understanding that command:
svcadm disable webconsole (Unix, superuser commands)
Turns off the Sun Web Console, a browser-based interface that performs systems management.
If it is enabled, system administrators can manage systems, devices and services from remote systems.
ts_dispatch_extended=<n> (Unix /etc/system)
Controls which dispatch table is loaded upon boot. A value of 1 loads the large system table, a value of 0 loads the regular system table.
tune_t_fsflushr=<n> (Unix /etc/system)
Controls the number of seconds between runs of the file system flush daemon, fsflush.
ulimit -s <n> (Unix shell)
Sets the stack size to n kbytes, or "unlimited" to allow the stack size to grow without limit.
Note that the "heap" and the "stack" share space; if your application allocates large amounts of memory on the heap,
then you may find that the stack limit should not be set to "unlimited". A commonly used setting for SPEC CPU2006 purposes
is a stack size of 128MB (131072K).
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.0.1.
Report generated on Tue Jul 22 16:07:10 2014 by SPEC CPU2006 flags formatter v6906.