Invoke the 64-bit Intel C++ compiler
Specifies compatibility with Microsoft Visual Studio 2005.
Invoke the Intel C++ compiler in C99 mode
Invoke the 64-bit Intel C++ compiler
Specifies compatibility with Microsoft Visual Studio 2005.
Invoke the 64-bit Intel Fortran compiler
Invoke the 64-bit Intel C++ compiler
Specifies compatibility with Microsoft Visual Studio 2005.
Invoke the Intel C++ compiler in C99 mode
Invoke the 64-bit Intel C++ compiler
Specifies compatibility with Microsoft Visual Studio 2005.
Invoke the 64-bit Intel Fortran compiler
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
For mixed-language benchmarks, tell the compiler to convert routine names to lowercase for compatibility
For mixed-language benchmarks, tell the compiler to assume that routine names end with an underscore
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Tell the compiler to treat source files as C++ regardless of the file extension
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
BOOST_NO_INTRINSIC_WCHAR_T indicates to the Boost code that on the particular compiler/configuration wchar_t is simply an alias for some other built-in integral type.
Defined if the compiler refuses to allow the explicit specialization of static member variables.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Definitions for Windows and Intel Compiler
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
SPEC_CPU_NOZMODIFIER can be used if your compiler does not implement the C99 standard printf length modifier "z". You'll know you need this flag if validation fails with the file SPECtestformatmodifier_z.txt
For mixed-language benchmarks, tell the compiler to convert routine names to lowercase for compatibility
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that the benchmark is being built on a Windows system using the Intel C++ compiler.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
For mixed-language benchmarks, tell the compiler to convert routine names to lowercase for compatibility
For mixed-language benchmarks, tell the compiler to assume that routine names end with an underscore
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Tell the compiler to treat source files as C++ regardless of the file extension
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
BOOST_NO_INTRINSIC_WCHAR_T indicates to the Boost code that on the particular compiler/configuration wchar_t is simply an alias for some other built-in integral type.
Defined if the compiler refuses to allow the explicit specialization of static member variables.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Definitions for Windows and Intel Compiler
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
SPEC_CPU_NOZMODIFIER can be used if your compiler does not implement the C99 standard printf length modifier "z". You'll know you need this flag if validation fails with the file SPECtestformatmodifier_z.txt
For mixed-language benchmarks, tell the compiler to convert routine names to lowercase for compatibility
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that the benchmark is being built on a Windows system using the Intel C++ compiler.
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
This option is used to indicate that the host system's integers and longs, are 32-bits wide, and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
This option tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify -O2 or -O3.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
This option tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify -O2 or -O3.
Enable C++ Exception Handling and RTTI
This option has the same effect as specifying /GX /GR.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
This option tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify -O2 or -O3.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
This option tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify -O2 or -O3.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
Enable C++ Exception Handling and RTTI
This option has the same effect as specifying /GX /GR.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
This option tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify -O2 or -O3.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
Instrument program for profiling for the first phase of two-phase profile guided otimization. This instrumentation gathers information about a program's execution paths and data values but does not gather information from hardware performance counters. The profile instrumentation also gathers data for optimizations which are unique to profile-feedback optimization.
Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.
Without any other options, the current directory is
searched for .dyn files
The -fast option enhances execution speed across the entire program by including the following options that can improve run-time performance:
-O3 (maximum speed and high-level optimizations)
-Qipo (enables interprocedural optimizations across files)
-QxP (generate code specialized for Intel Pentium 4 processor and compatible Intel processors with Streaming SIMD Extensions 3)
-Qprec-div- (disable -Qprec-div) where -Qprec-div improves precision of FP divides (some speed impact)
To override one of the options set by /fast, specify that option after the -fast option on the command line. The exception is the xP or QxP option which can't be overridden. The options set by /fast may change from release to release.
set the stack reserve amount specified to the linker
Enable SmartHeap library usage by forcing the linker to ignore multiple definitions
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as:
- Loop unrolling, including instruction scheduling
- Code replication to eliminate branches
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2
This option enables read only string-pooling optimization.
This option enables read/write string-pooling optimization.
Specifies the level of inline function expansion.
Ob0 - Disables inlining of user-defined functions. Note that statement functions are always inlined.
Ob1 - Enables inlining when an inline keyword or an inline attribute is specified. Also enables inlining according to the C++ language.
Ob2 - Enables inlining of any function at the compiler's discretion.
Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables:
- Inlining of intrinsics
- Intra-file interprocedural optimizations, which include:
- inlining
- constant propagation
- forward substitution
- routine attribute propagation
- variable address-taken analysis
- dead static function elimination
- removal of unreferenced variables
- The following capabilities for performance gain:
- constant propagation
- copy propagation
- dead-code elimination
- global register allocation
- global instruction scheduling and control speculation
- loop unrolling
- optimized code selection
- partial redundancy elimination
- strength reduction/induction variable simplification
- variable renaming
- exception handling optimizations
- tail recursions
- peephole optimizations
- structure assignment lowering and optimizations
- dead store elimination
On IA-32 Windows platforms, -O2 sets the following:
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Gs, and /Gy.
Disables inline expansion of all intrinsic functions.
This option disables stack-checking for routines with 4096 bytes of local variables and compiler temporaries.
Allows use of EBP as a general-purpose register in optimizations.
This option tells the compiler to separate functions into COMDATs for the linker.
This option enables most speed optimizations, but disables some that increase code size for a small speed benefit.
This option enables global optimizations.
Enables optimizations for speed and disables some optimizations that
increase code size and affect speed.
To limit code size, this option:
- Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling.
- Disables intrinsic recognition and intrinsics inlining.
The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops.
On IA-32 Windows platforms, -O1 sets the following:
/Qunroll0, /Oi-, /Op-, /Oy, /Gy, /Os, /GF (/Qvc7 and above), /Gf (/Qvc6 and below), /Ob2, and /Og
Tells the compiler the maximum number of times to unroll loops.
Disables conformance to the ANSI C and IEEE 754 standards for floating-point arithmetic.
Multi-file ip optimizations that includes:
- inline function expansion
- interprocedural constant propogation
- dead code elimination
- propagation of function characteristics
- passing arguments in registers
- loop-invariant code motion
Code is optimized for Intel Core Duo processors, Intel Core Solo processors, Intel Pentium 4 processors with Streaming SIMD Extensions 3, and compatible Intel processors with Streaming SIMD Extensions 3. The resulting code may contain unconditional use of features that are not supported on other processors. This option also enables new optimizations in addition to Intel processor-specific optimizations including advanced data layout and code restructuring optimizations to improve memory accesses for Intel processors.
Do not use this option if you are executing a program on a processor that is not an Intel processor. If you use this option on a non-compatible processor to compile the main program (in Fortran) or the function main() in C/C++, the program will display a fatal run-time error if they are executed on unsupported processors.
-Qprec-dev improves precision of floating-point divides. It has a slight impact on speed. -Qprec-dev- disables this option and enables optimizations that give slightly less precise results than full IEEE division.
When you specify -Qprec-dev- along with some optimizations, such as -xN and -xB (Linux) or /QxN and /QxB (Windows), the compiler may change floating-point division computations into multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve the speed of the computation.
However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When it is important to have fully precise IEEE division, do not use -Qprec-dev- which will enable the default -Qprec-dev and the result is more accurate, with some loss of performance.
This option enables C++ exception handling.
Enables C++ Run Time Type Information (RTTI).
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.0.
Report generated on Tue Jul 22 14:22:37 2014 by SPEC CPU2006 flags formatter v6906.