Copyright © 2006. QLogic Corporation. All rights reserved.
Invoke the PathScale C compiler.
Also used to invoke linker for C programs.
Invoke the PathScale C++ compiler.
Also used to invoke linker for C++ programs.
Invoke the PathScale Fortran 77, 90 and 95 compilers.
Also used to invoke linker for Fortran programs and
for mixed C / Fortran. pathf90 and pathf95 are synonymous.
Invoke the PathScale C compiler.
Also used to invoke linker for C programs.
Invoke the PathScale C++ compiler.
Also used to invoke linker for C++ programs.
Invoke the PathScale Fortran 77, 90 and 95 compilers.
Also used to invoke linker for Fortran programs and
for mixed C / Fortran. pathf90 and pathf95 are synonymous.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
CFP2006:
If -funderscoring is in effect, and the original Fortran external identifier contained an underscore, -fsecond-underscore appends a second underscore to the one added by -funderscoring. -fno-second-underscore does not append a second underscore. The default is both -funderscoring and -fsecond-underscore, the same defaults as g77 uses. -fno-second-underscore correcponds to the default policies of PGI Fortran and Intel Fortran.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Implements an optional code declaration for the Table template for certain platforms.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that the benchmark is being compiled on a Linux system.
CFP2006:
If -funderscoring is in effect, and the original Fortran external identifier contained an underscore, -fsecond-underscore appends a second underscore to the one added by -funderscoring. -fno-second-underscore does not append a second underscore. The default is both -funderscoring and -fsecond-underscore, the same defaults as g77 uses. -fno-second-underscore correcponds to the default policies of PGI Fortran and Intel Fortran.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
CFP2006:
If -funderscoring is in effect, and the original Fortran external identifier contained an underscore, -fsecond-underscore appends a second underscore to the one added by -funderscoring. -fno-second-underscore does not append a second underscore. The default is both -funderscoring and -fsecond-underscore, the same defaults as g77 uses. -fno-second-underscore correcponds to the default policies of PGI Fortran and Intel Fortran.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Implements an optional code declaration for the Table template for certain platforms.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that the benchmark is being compiled on a Linux system.
CFP2006:
If -funderscoring is in effect, and the original Fortran external identifier contained an underscore, -fsecond-underscore appends a second underscore to the one added by -funderscoring. -fno-second-underscore does not append a second underscore. The default is both -funderscoring and -fsecond-underscore, the same defaults as g77 uses. -fno-second-underscore correcponds to the default policies of PGI Fortran and Intel Fortran.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
-fb_create <path>
Used to specify that an instrumented executable program is to be
generated. Such an executable is suitable for producing feedback
data files with the specified prefix for use in feedback-directed
optimization (FDO).
The commonly used prefix is "fbdata".
This is OFF by default.
During the training run, the instrumented executable produces information regarding execution paths and data values, but does not generate information by using hardware performance counters.
-fb_opt <prefix for feedback data files>
Used to specify feedback-directed optimization (FDO) by extracting
feedback data from files with the specified prefix, which were
previously generated using -fb-create.
The commonly used prefix is "fbdata".
The same optimization flags should be used
for both the -fb-create and fb_opt compile steps.
Feedback data files created from executables compiled
with different optimization flags may give checksum errors.
FDO is OFF by default.
During the -fb_opt compilation phase, information regarding execution paths and data values are used to improve the information available to the optimizer. FDO enables some optimizations which are only performed when the feedback data file is available. The safety of optimizations performed under FDO is consistent with the level of safety implied by the other optimization flags (outside of fb_create and fb_opt) specified on the compile and link lines.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
-fb_create <path>
Used to specify that an instrumented executable program is to be
generated. Such an executable is suitable for producing feedback
data files with the specified prefix for use in feedback-directed
optimization (FDO).
The commonly used prefix is "fbdata".
This is OFF by default.
During the training run, the instrumented executable produces information regarding execution paths and data values, but does not generate information by using hardware performance counters.
-fb_opt <prefix for feedback data files>
Used to specify feedback-directed optimization (FDO) by extracting
feedback data from files with the specified prefix, which were
previously generated using -fb-create.
The commonly used prefix is "fbdata".
The same optimization flags should be used
for both the -fb-create and fb_opt compile steps.
Feedback data files created from executables compiled
with different optimization flags may give checksum errors.
FDO is OFF by default.
During the -fb_opt compilation phase, information regarding execution paths and data values are used to improve the information available to the optimizer. FDO enables some optimizations which are only performed when the feedback data file is available. The safety of optimizations performed under FDO is consistent with the level of safety implied by the other optimization flags (outside of fb_create and fb_opt) specified on the compile and link lines.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
Compile for 32-bit ABI, also known as x86 or IA32.
(For C++ only) -fexceptions enables exception handling. This is the default. -fno-exceptions disables exception handling.
-fb_create <path>
Used to specify that an instrumented executable program is to be
generated. Such an executable is suitable for producing feedback
data files with the specified prefix for use in feedback-directed
optimization (FDO).
The commonly used prefix is "fbdata".
This is OFF by default.
During the training run, the instrumented executable produces information regarding execution paths and data values, but does not generate information by using hardware performance counters.
-fb_opt <prefix for feedback data files>
Used to specify feedback-directed optimization (FDO) by extracting
feedback data from files with the specified prefix, which were
previously generated using -fb-create.
The commonly used prefix is "fbdata".
The same optimization flags should be used
for both the -fb-create and fb_opt compile steps.
Feedback data files created from executables compiled
with different optimization flags may give checksum errors.
FDO is OFF by default.
During the -fb_opt compilation phase, information regarding execution paths and data values are used to improve the information available to the optimizer. FDO enables some optimizations which are only performed when the feedback data file is available. The safety of optimizations performed under FDO is consistent with the level of safety implied by the other optimization flags (outside of fb_create and fb_opt) specified on the compile and link lines.
Compile for 32-bit ABI, also known as x86 or IA32.
Specify the basic level of optimization desired.
The options can be one of the following:
0 Turn off all optimizations.
1 Turn on local optimizations that can be done quickly. Do peephole optimizations and instruction scheduling.
2 Turn on extensive optimization.
This is the default.
The optimizations at this level are generally conservative,
in the sense that they are virtually always beneficial and
avoid changes which affect
such things as floating point accuracy. In addition to the level
1 optimizations, do inner loop
unrolling, if-conversion, two passes of instruction scheduling,
global register allocation, dead store elimination,
instruction scheduling across basic blocks,
and partial redundancy elimination.
3 Turn on aggressive optimization.
The optimizations at this level are distinguished from -O2
by their aggressiveness, generally seeking highest-quality
generated code even if it requires extensive compile time.
They may include optimizations that are generally beneficial
but may hurt performance.
This includes but is not limited to turning on the
Loop Nest Optimizer, -LNO:opt=1, and setting
-OPT:roundoff=1:IEEE_arithmetic=2:Olimit=9000:reorg_common=ON.
s Specify that code size is to be given priority in tradeoffs with execution time.
If no value is specified, 2 is assumed.-OPT:IEEE_arithmetic,IEEE_arith,IEEE_a=(1|2|3)
Specify the level of conformance to IEEE 754 floating pointing
roundoff/overflow behavior.
The options can be one of the following:
1 Adhere to IEEE accuracy. This is the default when optimization levels -O0, -O1 and -O2 are in effect.
2 May produce inexact result not conforming to IEEE 754. This is the default when -O3 is in effect.
3 All mathematically valid transformations are allowed.
-CG:load_exe=N : Specify the threshold for subsuming a memory load
operation into the operand of an arithmetic instruction.
The value of 0 turns off this subsumption optimization.
If N is 1, this subsumption is performed only when the result of
the load has only one use.
This subsumption is not performed if the number of times the result
of the load is used exceeds the value N, a non-negative integer.
If the ABI is 64-bit and the language is Fortran, the default for N
is 2, otherwise the default is 1.
-CG:movnti=N : Convert ordinary stores to non-temporal stores when writing memory blocks of size larger than N KB. When N is set to 0, this transformation is avoided. The default value is 120 (KB).
Enable or disable moving loop-invariant expressions out of loops. The default is ON.
(For C++ only) -fexceptions enables exception handling. This is the default. -fno-exceptions disables exception handling.
-fb_create <path>
Used to specify that an instrumented executable program is to be
generated. Such an executable is suitable for producing feedback
data files with the specified prefix for use in feedback-directed
optimization (FDO).
The commonly used prefix is "fbdata".
This is OFF by default.
During the training run, the instrumented executable produces information regarding execution paths and data values, but does not generate information by using hardware performance counters.
-fb_opt <prefix for feedback data files>
Used to specify feedback-directed optimization (FDO) by extracting
feedback data from files with the specified prefix, which were
previously generated using -fb-create.
The commonly used prefix is "fbdata".
The same optimization flags should be used
for both the -fb-create and fb_opt compile steps.
Feedback data files created from executables compiled
with different optimization flags may give checksum errors.
FDO is OFF by default.
During the -fb_opt compilation phase, information regarding execution paths and data values are used to improve the information available to the optimizer. FDO enables some optimizations which are only performed when the feedback data file is available. The safety of optimizations performed under FDO is consistent with the level of safety implied by the other optimization flags (outside of fb_create and fb_opt) specified on the compile and link lines.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
-ffast-math improves FP speed by relaxing ANSI & IEEE rules. -fno-fast-math tells the compiler to conform to ANSI and IEEE math rules at the expense of speed. -ffast- math implies -OPT:IEEE_arithmetic=2 -fno-math-errno. -fno-fast-math implies -OPT:IEEE_arithmetic=1 -fmath-errno.
-fb_create <path>
Used to specify that an instrumented executable program is to be
generated. Such an executable is suitable for producing feedback
data files with the specified prefix for use in feedback-directed
optimization (FDO).
The commonly used prefix is "fbdata".
This is OFF by default.
During the training run, the instrumented executable produces information regarding execution paths and data values, but does not generate information by using hardware performance counters.
-fb_opt <prefix for feedback data files>
Used to specify feedback-directed optimization (FDO) by extracting
feedback data from files with the specified prefix, which were
previously generated using -fb-create.
The commonly used prefix is "fbdata".
The same optimization flags should be used
for both the -fb-create and fb_opt compile steps.
Feedback data files created from executables compiled
with different optimization flags may give checksum errors.
FDO is OFF by default.
During the -fb_opt compilation phase, information regarding execution paths and data values are used to improve the information available to the optimizer. FDO enables some optimizations which are only performed when the feedback data file is available. The safety of optimizations performed under FDO is consistent with the level of safety implied by the other optimization flags (outside of fb_create and fb_opt) specified on the compile and link lines.
Specify the basic level of optimization desired.
The options can be one of the following:
0 Turn off all optimizations.
1 Turn on local optimizations that can be done quickly. Do peephole optimizations and instruction scheduling.
2 Turn on extensive optimization.
This is the default.
The optimizations at this level are generally conservative,
in the sense that they are virtually always beneficial and
avoid changes which affect
such things as floating point accuracy. In addition to the level
1 optimizations, do inner loop
unrolling, if-conversion, two passes of instruction scheduling,
global register allocation, dead store elimination,
instruction scheduling across basic blocks,
and partial redundancy elimination.
3 Turn on aggressive optimization.
The optimizations at this level are distinguished from -O2
by their aggressiveness, generally seeking highest-quality
generated code even if it requires extensive compile time.
They may include optimizations that are generally beneficial
but may hurt performance.
This includes but is not limited to turning on the
Loop Nest Optimizer, -LNO:opt=1, and setting
-OPT:roundoff=1:IEEE_arithmetic=2:Olimit=9000:reorg_common=ON.
s Specify that code size is to be given priority in tradeoffs with execution time.
If no value is specified, 2 is assumed.-OPT:Ofast
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
This effectively turns on the following optimizations:
-OPT:ro=2:Olimit=0:div_split=ON:alias=typed.
-OPT:IEEE_arithmetic,IEEE_arith,IEEE_a=(1|2|3)
Specify the level of conformance to IEEE 754 floating pointing
roundoff/overflow behavior.
The options can be one of the following:
1 Adhere to IEEE accuracy. This is the default when optimization levels -O0, -O1 and -O2 are in effect.
2 May produce inexact result not conforming to IEEE 754. This is the default when -O3 is in effect.
3 All mathematically valid transformations are allowed.
Specify options and transformations performed on loop nests by the Loop Nest Optimizer (LNO). The -LNO options are enabled only if -O3 is also specified on the pathf95 command line.
-LNO:blocking : Enable or disable the cache blocking transformation. The default is ON.
-LNO:ignore_feedback=(on|off|0|1) : If the flag is ON then feedback information from the loop annotations will be ignored in LNO transformations. The default is OFF.
-fb_create <path>
Used to specify that an instrumented executable program is to be
generated. Such an executable is suitable for producing feedback
data files with the specified prefix for use in feedback-directed
optimization (FDO).
The commonly used prefix is "fbdata".
This is OFF by default.
During the training run, the instrumented executable produces information regarding execution paths and data values, but does not generate information by using hardware performance counters.
-fb_opt <prefix for feedback data files>
Used to specify feedback-directed optimization (FDO) by extracting
feedback data from files with the specified prefix, which were
previously generated using -fb-create.
The commonly used prefix is "fbdata".
The same optimization flags should be used
for both the -fb-create and fb_opt compile steps.
Feedback data files created from executables compiled
with different optimization flags may give checksum errors.
FDO is OFF by default.
During the -fb_opt compilation phase, information regarding execution paths and data values are used to improve the information available to the optimizer. FDO enables some optimizations which are only performed when the feedback data file is available. The safety of optimizations performed under FDO is consistent with the level of safety implied by the other optimization flags (outside of fb_create and fb_opt) specified on the compile and link lines.
Specify the basic level of optimization desired.
The options can be one of the following:
0 Turn off all optimizations.
1 Turn on local optimizations that can be done quickly. Do peephole optimizations and instruction scheduling.
2 Turn on extensive optimization.
This is the default.
The optimizations at this level are generally conservative,
in the sense that they are virtually always beneficial and
avoid changes which affect
such things as floating point accuracy. In addition to the level
1 optimizations, do inner loop
unrolling, if-conversion, two passes of instruction scheduling,
global register allocation, dead store elimination,
instruction scheduling across basic blocks,
and partial redundancy elimination.
3 Turn on aggressive optimization.
The optimizations at this level are distinguished from -O2
by their aggressiveness, generally seeking highest-quality
generated code even if it requires extensive compile time.
They may include optimizations that are generally beneficial
but may hurt performance.
This includes but is not limited to turning on the
Loop Nest Optimizer, -LNO:opt=1, and setting
-OPT:roundoff=1:IEEE_arithmetic=2:Olimit=9000:reorg_common=ON.
s Specify that code size is to be given priority in tradeoffs with execution time.
If no value is specified, 2 is assumed.-OPT:Ofast
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
This effectively turns on the following optimizations:
-OPT:ro=2:Olimit=0:div_split=ON:alias=typed.
-OPT:roundoff,ro=(0|1|2|3)
Specify the level of acceptable departure from source language
floating-point, round-off, and overflow semantics.
The options can be one of the following:
0 = Inhibit optimizations that might affect the floating-point behavior. This is the default when optimization levels -O0, -O1, and -O2 are in effect.
1 = Allow simple transformations that might cause limited round-off or overflow differences. Compounding such transformations could have more extensive effects. This is the default when -O3 is in effect.
2 = Allow more extensive transformations, such as the reordering of reduction loops. This is the default level when -OPT:Ofast is specified.
3 = Enable any mathematically valid transformation.
-OPT:unroll_size=N
Set the ceiling of maximum number of instructions for an
unrolled inner loop. If N=0, the ceiling is disregarded.
The default is 40.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
-CG:local_fwd_sched : Change the instruction scheduling algorithm to work forward instead of backward for the instructions in each basic block. The default is OFF for 64-bit ABI, and ON for 32-bit ABI.
Specify options and transformations performed on loop nests by the Loop Nest Optimizer (LNO). The -LNO options are enabled only if -O3 is also specified on the pathf95 command line.
-LNO:blocking : Enable or disable the cache blocking transformation. The default is ON.
-LNO:interchange=(on|off|0|1) : Disable the loop interchange transformation in the loop nest optimizer. Default is ON.
-LNO:full_unroll,fu=N : Fully unroll loops with trip_count <= N inside LNO. N can be any integer between 0 and 100. The default value for N is 5. Setting this flag to 0 disables full unrolling of small trip count loops inside LNO.
-LNO:full_unroll_outer=(on|off|0|1) : Control the full unrolling of loops with known trip count that do not contain a loop and are not contained in a loop. The conditions implied by both the full_unroll and the full_unroll_size options must be satisfied for the loop to be fully unrolled. The default is OFF.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
-LNO:fission=N : Perform loop fission. N can be one of the following:
0 = Disable loop fission (default)
1 = Perform normal loop fission as necessary
2 = Specify that fission be tried before fusion
Because -LNO:fusion is on by default, turning on fission without turning off fusion may result in their effects being nullified. Ordinarily, fusion is applied before fission. Specifying -LNO:fission=2 will turn on fission and cause it to be applied before fusion.
-LNO:prefetch=(0|1|2|3) : This option specifies the level of prefetching.
0 = Prefetch disabled.
1 = Prefetch is done only for arrays that are always referenced in each iteration of a loop.
2 = Prefetch is done without the above restriction. This is the default.
3 = Most aggressive.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
-CG:local_fwd_sched : Change the instruction scheduling algorithm to work forward instead of backward for the instructions in each basic block. The default is OFF for 64-bit ABI, and ON for 32-bit ABI.
-IPA:plimit=N : This option stops inlining into a specific subprogram once it reaches size N in the intermediate representation. Default is 2500.
Specify the basic level of optimization desired.
The options can be one of the following:
0 Turn off all optimizations.
1 Turn on local optimizations that can be done quickly. Do peephole optimizations and instruction scheduling.
2 Turn on extensive optimization.
This is the default.
The optimizations at this level are generally conservative,
in the sense that they are virtually always beneficial and
avoid changes which affect
such things as floating point accuracy. In addition to the level
1 optimizations, do inner loop
unrolling, if-conversion, two passes of instruction scheduling,
global register allocation, dead store elimination,
instruction scheduling across basic blocks,
and partial redundancy elimination.
3 Turn on aggressive optimization.
The optimizations at this level are distinguished from -O2
by their aggressiveness, generally seeking highest-quality
generated code even if it requires extensive compile time.
They may include optimizations that are generally beneficial
but may hurt performance.
This includes but is not limited to turning on the
Loop Nest Optimizer, -LNO:opt=1, and setting
-OPT:roundoff=1:IEEE_arithmetic=2:Olimit=9000:reorg_common=ON.
s Specify that code size is to be given priority in tradeoffs with execution time.
If no value is specified, 2 is assumed.-OPT:rsqrt=(0|1|2)
This option specifies if the RSQRT machine instruction should be used
to calculate reciprocal square root. RSQRT is faster but potentially
less accurate than the regular square root operation.
0 means not to use RSQRT.
1 means to use RSQRT followed by instructions to refine the result.
2 means to use RSQRT by itself.
Default is 1 when -OPT:roundoff=2 or greater, else the default is 0.
-OPT:roundoff,ro=(0|1|2|3)
Specify the level of acceptable departure from source language
floating-point, round-off, and overflow semantics.
The options can be one of the following:
0 = Inhibit optimizations that might affect the floating-point behavior. This is the default when optimization levels -O0, -O1, and -O2 are in effect.
1 = Allow simple transformations that might cause limited round-off or overflow differences. Compounding such transformations could have more extensive effects. This is the default when -O3 is in effect.
2 = Allow more extensive transformations, such as the reordering of reduction loops. This is the default level when -OPT:Ofast is specified.
3 = Enable any mathematically valid transformation.
-fb_create <path>
Used to specify that an instrumented executable program is to be
generated. Such an executable is suitable for producing feedback
data files with the specified prefix for use in feedback-directed
optimization (FDO).
The commonly used prefix is "fbdata".
This is OFF by default.
During the training run, the instrumented executable produces information regarding execution paths and data values, but does not generate information by using hardware performance counters.
-fb_opt <prefix for feedback data files>
Used to specify feedback-directed optimization (FDO) by extracting
feedback data from files with the specified prefix, which were
previously generated using -fb-create.
The commonly used prefix is "fbdata".
The same optimization flags should be used
for both the -fb-create and fb_opt compile steps.
Feedback data files created from executables compiled
with different optimization flags may give checksum errors.
FDO is OFF by default.
During the -fb_opt compilation phase, information regarding execution paths and data values are used to improve the information available to the optimizer. FDO enables some optimizations which are only performed when the feedback data file is available. The safety of optimizations performed under FDO is consistent with the level of safety implied by the other optimization flags (outside of fb_create and fb_opt) specified on the compile and link lines.
Specify the basic level of optimization desired.
The options can be one of the following:
0 Turn off all optimizations.
1 Turn on local optimizations that can be done quickly. Do peephole optimizations and instruction scheduling.
2 Turn on extensive optimization.
This is the default.
The optimizations at this level are generally conservative,
in the sense that they are virtually always beneficial and
avoid changes which affect
such things as floating point accuracy. In addition to the level
1 optimizations, do inner loop
unrolling, if-conversion, two passes of instruction scheduling,
global register allocation, dead store elimination,
instruction scheduling across basic blocks,
and partial redundancy elimination.
3 Turn on aggressive optimization.
The optimizations at this level are distinguished from -O2
by their aggressiveness, generally seeking highest-quality
generated code even if it requires extensive compile time.
They may include optimizations that are generally beneficial
but may hurt performance.
This includes but is not limited to turning on the
Loop Nest Optimizer, -LNO:opt=1, and setting
-OPT:roundoff=1:IEEE_arithmetic=2:Olimit=9000:reorg_common=ON.
s Specify that code size is to be given priority in tradeoffs with execution time.
If no value is specified, 2 is assumed.-LNO:prefetch_ahead=N : Prefetch N cache line(s) ahead. The default is 2.
-LNO:ou_prod_max=N : This option indicates that the product of unrolling of the various outer loops in a given loop nest is not to exceed N, where N is a positive integer. The default is 16.
-LNO:full_unroll,fu=N : Fully unroll loops with trip_count <= N inside LNO. N can be any integer between 0 and 100. The default value for N is 5. Setting this flag to 0 disables full unrolling of small trip count loops inside LNO.
Invoke inter-procedural analysis (IPA). Specifying this option is identical to specifying -IPA or -IPA:. Default settings for the individual IPA suboptions are used.
Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno -ffast-math.
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
NOTE: -Ofast enables -ipa (inter-procedural analysis), which places limitations on how libraries and .o files are built.
-CG:prefetch : Suppress any generation of prefetch instructions in the code generator. The default is ON.
-LNO:simd=(0|1|2) : This option enables or disables inner loop vectorization.
0 = Turn off the vectorizer.
1 = (Default) Vectorize only if the compiler can determine that there is no undesirable performance impact due to sub-optimal alignment. Vectorize only if vectorization does not introduce accuracy problems with floating-point operations.
2 = Vectorize without any constraints (most aggressive).
-OPT:unroll_times_max=N
Unroll inner loops by a maximum of N. The default is 4.
-WOPT:mem_opnds=(ON|OFF)
Makes the scalar optimizer preserve any memory operands of arithmetic
operations so as to help bring about subsumption of memory loads into
the operands of arithmetic operations. Load subsumption is the combining
of an arithmetic instruction and a memory load into one instruction.
Default is OFF.
-IPA:max_jobs=N : This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compilations running at once. The option can take the following values:
0 = The parallelism chosen is equal to either the number of CPUs, the number of cores, or the number of hyperthreading units in the compiling system, whichever is greatest.
1 = Disable parallelization during compilation (default)
>1 = Specifically set the degree of parallelism
-IPA:max_jobs=N : This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compilations running at once. The option can take the following values:
0 = The parallelism chosen is equal to either the number of CPUs, the number of cores, or the number of hyperthreading units in the compiling system, whichever is greatest.
1 = Disable parallelization during compilation (default)
>1 = Specifically set the degree of parallelism
-IPA:max_jobs=N : This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compilations running at once. The option can take the following values:
0 = The parallelism chosen is equal to either the number of CPUs, the number of cores, or the number of hyperthreading units in the compiling system, whichever is greatest.
1 = Disable parallelization during compilation (default)
>1 = Specifically set the degree of parallelism
-IPA:max_jobs=N : This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compilations running at once. The option can take the following values:
0 = The parallelism chosen is equal to either the number of CPUs, the number of cores, or the number of hyperthreading units in the compiling system, whichever is greatest.
1 = Disable parallelization during compilation (default)
>1 = Specifically set the degree of parallelism
-IPA:max_jobs=N : This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compilations running at once. The option can take the following values:
0 = The parallelism chosen is equal to either the number of CPUs, the number of cores, or the number of hyperthreading units in the compiling system, whichever is greatest.
1 = Disable parallelization during compilation (default)
>1 = Specifically set the degree of parallelism
-IPA:max_jobs=N : This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compilations running at once. The option can take the following values:
0 = The parallelism chosen is equal to either the number of CPUs, the number of cores, or the number of hyperthreading units in the compiling system, whichever is greatest.
1 = Disable parallelization during compilation (default)
>1 = Specifically set the degree of parallelism
-IPA:max_jobs=N : This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compilations running at once. The option can take the following values:
0 = The parallelism chosen is equal to either the number of CPUs, the number of cores, or the number of hyperthreading units in the compiling system, whichever is greatest.
1 = Disable parallelization during compilation (default)
>1 = Specifically set the degree of parallelism
-IPA:max_jobs=N : This option limits the maximum parallelism when invoking the compiler after IPA to (at most) N compilations running at once. The option can take the following values:
0 = The parallelism chosen is equal to either the number of CPUs, the number of cores, or the number of hyperthreading units in the compiling system, whichever is greatest.
1 = Disable parallelization during compilation (default)
>1 = Specifically set the degree of parallelism
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Specify the basic level of optimization desired.
The options can be one of the following:
0 Turn off all optimizations.
1 Turn on local optimizations that can be done quickly. Do peephole optimizations and instruction scheduling.
2 Turn on extensive optimization.
This is the default.
The optimizations at this level are generally conservative,
in the sense that they are virtually always beneficial and
avoid changes which affect
such things as floating point accuracy. In addition to the level
1 optimizations, do inner loop
unrolling, if-conversion, two passes of instruction scheduling,
global register allocation, dead store elimination,
instruction scheduling across basic blocks,
and partial redundancy elimination.
3 Turn on aggressive optimization.
The optimizations at this level are distinguished from -O2
by their aggressiveness, generally seeking highest-quality
generated code even if it requires extensive compile time.
They may include optimizations that are generally beneficial
but may hurt performance.
This includes but is not limited to turning on the
Loop Nest Optimizer, -LNO:opt=1, and setting
-OPT:roundoff=1:IEEE_arithmetic=2:Olimit=9000:reorg_common=ON.
s Specify that code size is to be given priority in tradeoffs with execution time.
If no value is specified, 2 is assumed.Invoke inter-procedural analysis (IPA). Specifying this option is identical to specifying -IPA or -IPA:. Default settings for the individual IPA suboptions are used.
-OPT:Ofast
Use optimizations selected to maximize performance.
Although the optimizations are generally safe, they may affect
floating point accuracy due to rearrangement of computations.
This effectively turns on the following optimizations:
-OPT:ro=2:Olimit=0:div_split=ON:alias=typed.
-OPT:roundoff,ro=(0|1|2|3)
Specify the level of acceptable departure from source language
floating-point, round-off, and overflow semantics.
The options can be one of the following:
0 = Inhibit optimizations that might affect the floating-point behavior. This is the default when optimization levels -O0, -O1, and -O2 are in effect.
1 = Allow simple transformations that might cause limited round-off or overflow differences. Compounding such transformations could have more extensive effects. This is the default when -O3 is in effect.
2 = Allow more extensive transformations, such as the reordering of reduction loops. This is the default level when -OPT:Ofast is specified.
3 = Enable any mathematically valid transformation.
-OPT:Olimit=N
Disable optimization when size of program unit is > N. When N is 0,
program unit size is ignored and optimization process will not be
disabled due to compile time limit.
The default is 0 when -OPT:Ofast is specified,
9000 when -O3 is specified; otherwise the default is 6000.
-OPT:div_split=(ON|OFF)
Enable or disable changing x/y into x*(recip(y)). This is OFF by
default, but enabled by -OPT:Ofast or -OPT:IEEE_arithmetic=3.
This transformation generates fairly accurate code.
The -OPT: option group controls miscellaneous optimizations. These options override defaults based on the main optimization level.
-OPT:alias=<name>
Specify the pointer aliasing model
to be used. By specifying one or more of the following for <name>,
the compiler is able to make assumptions throughout the compilation:
typed
Assume that the code adheres to the ANSI/ISO C standard
which states that two pointers of different types cannot point
to the same location in memory.
This is ON by default when -OPT:Ofast is specified.
restrict
Specify that distinct pointers are assumed to point to distinct,
non-overlapping objects. This is OFF by default.
disjoint
Specify that any two pointer expressions are assumed to point
to distinct, non-overlapping objects. This is OFF by default.
Do not set ERRNO after calling math functions that are executed with a single instruction, e.g. sqrt. A program that relies on IEEE exceptions for math error handling may want to use this flag for speed while maintaining IEEE arithmetic compatibility. This is implied by -Ofast. The default is -fmath-errno.
-ffast-math improves FP speed by relaxing ANSI & IEEE rules. -fno-fast-math tells the compiler to conform to ANSI and IEEE math rules at the expense of speed. -ffast- math implies -OPT:IEEE_arithmetic=2 -fno-math-errno. -fno-fast-math implies -OPT:IEEE_arithmetic=1 -fmath-errno.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.0.
Report generated on Tue Jul 22 10:42:43 2014 by SPEC CPU2006 flags formatter v6906.